Math, asked by PragyaTbia, 1 year ago

Integrate the function w.r.t.x. : \frac{\cos x}{1-\sin x}

Answers

Answered by Róunak
3
Hey mate …
_________

Here is the pic of the answer

Wishing you a Happy day :P
Attachments:
Answered by hukam0685
1

Answer:

\int\:\frac{cos\:x}{1-sin\:x}dx=-log\:|1-sin\:x|+C\\

Step-by-step explanation:

we can integrate the given function by

1) Substitution method

let

1-sin\:x=t\\\\0-cos\:x\:dx=dt\\\\so\\\\cos\:x\:dx=-dt

Now substitute the value

\int\:\frac{cos\:x}{1-sin\:x}dx\\ \\ =\int\:\frac{-1}{t}\:dt\\\\=\:-log\:|t|+C\\ \\

Now substitute tha value of t again

=-log\:|1-sin\:x|+C\\\\so\\\\\int\:\frac{cos\:x}{1-sin\:x}dx=-log\:|1-sin\:x|+C\\



Similar questions