Math, asked by PragyaTbia, 1 year ago

Integrate the function w..r. to x : \frac{x^{2}+2}{(x-1)(x+2)(x+3)}

Answers

Answered by hukam0685
0
Solution:The given problem can be solved by partial fraction.
\frac{x^{2}+2}{(x-1)(x+2)(x+3)}= \frac{A}{(x-1)}+\frac{B}{(x+2)}+\frac{C}{(x+3)}\\\\

To find the values of constant

A= \frac{x^{2}+2}{(x+2)(x+3)}\:\:put x=1\\\\A=\frac{3}{12}\\\\A=\frac{1}{4}\\\\B= \frac{x^{2}+2}{(x-1)(x+3)}\:\:put x=-2\\\\B=\frac{6}{-3}\\\\B=-2\\\\C= \frac{x^{2}+2}{(x+2)(x-1)}\:\:put x=-3\\\\C=\frac{11}{4}\\\\

So
\frac{x^{2}+2}{(x-1)(x+2)(x+3)}= \frac{1}{4(x-1)}+\frac{-2}{(x+2)}+\frac{11}{4(x+3)}\\\\

Now integrate
\int\frac{x^{2}+2}{(x-1)(x+2)(x+3)} dx= \int \frac{1}{4(x-1)} dx+\int\frac{-2}{(x+2)} dx+\int\frac{11}{4(x+3)} dx\\\\=\frac{log (x-1)}{4}-2 log (x+2)+\frac{11 ×log( x+3)}{4}+C\\
Similar questions