Math, asked by PragyaTbia, 1 year ago

Integrate the function w..r. to x : x^{2}\cdotp e^{3x}

Answers

Answered by hukam0685
0
Solution:

To integrate the given function we must use integration by parts

Formula:
\int U.V dx=U\int V dx-\int (\frac{dU}{dx}\int V dx)dx\\\\

\int\:x^{2}.e^{3x}dx=x^{2}\int\:e^{3x} dx-\int (\frac{d\:x^{2}}{dx}\int\:e^{3x} dx)dx\\\\=\frac{x^{2}e^{3x}}{3}-\int\frac{2x\:e^{3x}}{3} dx\\\\ =\frac{x^{2}e^{3x}}{3}-\frac{2}{3}\int\:x\:e^{3x} dx\\

Again it is a form of U.V ,so apply again integration by parts

\int\:xe^{3x}\:dx=x\int e^{3x}\:dx-\int (\frac{d\:x}{dx}\int e^{3x}\:dx)dx\\\\=\frac{xe^{3x}}{3}-\int \frac{e^{3x}}{3}\:dx\\\\ =\frac{xe^{3x}}{3}-\frac{e^{3x}}{9} +C\\\\

Put this value above

=\frac{x^{2}e^{3x}}{3}-\frac{2}{3} (\frac{xe^{3x}}{3}-\frac{e^{3x}}{9} )+C\\\\= \frac{x^{2}e^{3x}}{3}-\frac{2}{9} xe^{3x}+\frac{2e^{3x}}{27} )+C\\\\

So,

 \int x^{2}.e^{3x} dx=\frac{x^{2}e^{3x}}{3}-\frac{2}{9} xe^{3x}+\frac{2.e^{3x}}{27} +C\\\\
Similar questions
Math, 1 year ago