Math, asked by BrainlyHelper, 1 year ago

integrate the function (x³ - 1)⅓*x^5 .dx

Answers

Answered by rohitkumargupta
3

HELLO DEAR,

given function is ∫(x³ - )^⅓ x^5.dx

let (x³ - 1) = t , and x³ = (1 + t)
⇒3x² = dt/dx
⇒dx = dt/3x²

So, ∫(x³ - 1)^⅓ x^5 * dt/3x²

⇒1/3 ∫t^⅓ (1 + t) *dt

⇒1/3 ∫(t^⅓ + t^{4/3}).dt

⇒1/3 ∫t^{1/3}.dt + 1/3∫t^{4/3}.dt

⇒1/3\bold{\frac{t^{4/3}}{4/3}} + 1/3\bold{\frac{t^{7/3}}{7/3}} + c

put the value of t in the above function,

\bold{\frac{(x^3 - 1)^{4/3}}{4} + \frac{(x^3 - 1)^{7/3}}{7} + c}.


I HOPE ITS HELP YOU DEAR,
THANKS

Similar questions