Math, asked by BrainlyHelper, 1 year ago

integrate the function x³sin(tan^{-1}x⁴)/(1 + x^8).dx

Answers

Answered by rohitkumargupta
4
HELLO DEAR,

GIVEN FUNCTION IS \bold{\int{\frac{x^3sin(tan^{-1}x^4)}{(1 + x^8)}}\,dx}

let tan^{-1}x⁴ = t \bold{\Rightarrow dt/dx = x^3/(1 + x^8)}
\bold{dx = (1 + x^8)/x^3\,dt}

now, \bold{\int{\frac{x^3sin(tan^{-1}x^4)}{(1 + x^8)}*\frac{(1 + x^8)}\,dt}{x^3}}

\bold{\int{tan^{-1}x^4}\,dt}

\bold{\int{t}\,dt}

\bold{t^2/2 + c}

put the value of t in above function

\bold{(tan^{-1}x^4)/2 + c}

where, c is arbitrary constant.

I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions