Physics, asked by tanay69, 8 months ago

integrate the given​

Attachments:

Answers

Answered by waqarsd
0

Answer:

 \large{ \bold{x -  \frac{4}{x}  + c}}

Explanation:

 \int \frac{ {x}^{2}  + 4}{ {x}^{2} } dx \\  \\  =  \int \: (1 +  \frac{4}{ {x}^{2} } )dx \\  \\  =  \int1.dx +  4\int \:  \frac{1}{ {x}^{2} } dx \\  \\  = x -  \frac{4}{x}  + c \\  \\

HOPE IT HELPS

Answered by Asterinn
3

 \implies\displaystyle \int \dfrac{ {x}^{2} + 4 }{ {x}^{2} }dx

\implies\displaystyle \int (\dfrac{ {x}^{2}  }{ {x}^{2}  } + \dfrac{ 4 }{ {x}^{2} })dx

\implies\displaystyle \int (1+ \dfrac{ 4 }{ {x}^{2} })dx

\implies\displaystyle \int 1dx+ \int\dfrac{ 4 }{ {x}^{2} }dx

\implies\displaystyle \int 1dx+ \int\dfrac{ 4{x}^{ - 2} }{ 1 }dx

\implies\displaystyle \int 1dx+ \int{ 4{x}^{ - 2} }dx

\implies\displaystyle x -  { 4{x}^{ - 1} } + c

where c is constant.

\implies\displaystyle x -  {  \dfrac{4}{x} } + c

Answer :

\implies\displaystyle x -  {  \dfrac{4}{x} } + c

_____________________

\large\bf\red{Learn\:More}

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

_________________________

Similar questions