Math, asked by Anonymous, 1 month ago

Integrate the given function.

f(x) = cosec x . sec x

Answers

Answered by MrImpeccable
20

ANSWER:

To Integrate:

  • f(x) = cosec x . sec x

Solution:

We are given that,

\implies f(x)=\csc x\cdot \sec x

First, we need to simplify the value of f(x),

\implies f(x)=\dfrac{1}{\sin x}\cdot \sec x

\implies f(x)=\left(\dfrac{1}{\sin x}\times\dfrac{\cos x}{\cos x}\right)\cdot \sec x

\implies f(x)=\dfrac{\cos x}{\sin x} \cdot \dfrac{1}{\cos x}\cdot \sec x

\implies f(x)=\dfrac{1}{\tan x}\cdot\sec x\cdot \sec x

\implies f(x)=\dfrac{1}{\tan x}\cdot \sec^2x

So,

\implies f(x)=\dfrac{\sec^2x}{\tan x}

We need to calculate the integral of,

\displaystyle\implies\int f(x) dx

So,

\displaystyle\implies\int \dfrac{\sec^2x}{\tan x} dx

Let us assume tan x = u

So,

\implies u=\tan x

Now, differentiating both sides w.r.t. x,

\implies \dfrac{du}{dx}=\dfrac{d}{dx}\tan x

\implies \dfrac{du}{dx}=\sec^2x

So,

\implies du=\sec^2x\: dx

We had,

\displaystyle\implies\int \dfrac{\sec^2x}{\tan x} dx

Substituting the values of tan x and sec^2x dx,

\displaystyle\implies\int \dfrac{1}{u} du

\implies \ln(u) + C

Substituting u for tan x,

\implies \ln(\tan x) + C

But, this function is valid only for positive value of tan x. So,

\implies \ln(|\tan x|) + C

Hence,

\displaystyle\bf\implies\int \dfrac{sec^2x}{tan x} dx = ln(|tan x|) + C

Similar questions