Math, asked by Anonymous, 1 month ago

Integrate the given function :-

 \int \dfrac{ {x}^{4} }{1 +  {x}^{2} } \:  dx

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Solution}:}}

We have to integrate the given function.

 \displaystyle =  \rm \int \dfrac{ {x}^{4} }{1 +  {x}^{2} } \:  dx

We can write it as:

 \displaystyle =  \rm \int \dfrac{ {x}^{4} - 1 + 1 }{1 +  {x}^{2} } \:  dx

 \displaystyle =  \rm \int \dfrac{1 + ( {x}^{2} - 1)( {x}^{2}  + 1) }{1 +  {x}^{2} } \:  dx

 \displaystyle =  \rm \int \bigg( \dfrac{1}{1 +  {x}^{2} } +  {x}^{2}  - 1 \bigg)  \:  dx

 \displaystyle =  \rm \int \dfrac{1}{1 +  {x}^{2} } \: dx +  \int {x}^{2} \: dx  -  \int 1  \:  dx

We know that:

 \displaystyle \rm: \longmapsto \int \dfrac{1}{1 +  {x}^{2} } \: dx =  \arctan(x)  + C

 \displaystyle \rm: \longmapsto \int {x}^{n}\: dx =  \dfrac{ {x}^{n + 1} }{n + 1} + C

Therefore, we get:

 \displaystyle =  \rm  \arctan(x) + \dfrac{ { x }^{2 + 1} }{2 + 1}  - x + C

 \displaystyle =  \rm \dfrac{ { x }^{3} }{3}  - x +  \arctan(x)  + C

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf kx+C\\ \\ \sf sin(x)&\sf-cos(x)+C\\ \\ \sf cos(x)&\sf sin(x)+C\\ \\ \sf{sec}^{2}(x)&\sf tan(x)+C\\ \\ \sf{cosec}^{2}(x)&\sf-cot(x)+C\\ \\ \sf sec(x)\  tan(x)&\sf sec(x)+C\\ \\ \sf cosec(x)\ cot(x)&\sf-cosec(x)+C\\ \\ \sf tan(x)&\sf log(sec(x))+C\\ \\ \sf\dfrac{1}{x}&\sf log(x)+C\\ \\ \sf{e}^{x}&\sf{e}^{x}+C\\ \\ \sf x^{n},n\neq-1&\sf\dfrac{x^{n+1}}{n+1}+C\end{array}}


anindyaadhikari13: Thanks for the Brainliest :)
Answered by MrImpeccable
25

ANSWER:

To Integrate:

  • (x⁴)/(1+x²)

Solution:

We are given that,

\displaystyle\implies\int\dfrac{x^4}{1+x^2}\:dx

\displaystyle\implies\int f(x)\:dx

We will first simplify the function. So,

\implies f(x)=\dfrac{x^4}{1+x^2}

Adding and subtracting 1,

\implies f(x)=\dfrac{x^4-1+1}{1+x^2}

\implies f(x)=\dfrac{(x^4-1)+1}{x^2+1}

\implies f(x)=\dfrac{(x^2-1)(x^2+1)+1}{x^2+1}

Separating the terms,

\implies f(x)=\dfrac{(x^2-1)(x^2+1)}{x^2+1}+\dfrac{1}{x^2+1}

Simplifying,

\implies f(x)=x^2-1+\dfrac{1}{x^2+1}

So,

\displaystyle\implies\int f(x)\:dx

\displaystyle\implies\int x^2-1+\dfrac{1}{x^2+1}\:dx

By separating the terms,

\displaystyle\implies\int x^2\:dx-\int 1\:dx +\int \dfrac{1}{x^2+1}\:dx

We know that,

\displaystyle\hookrightarrow \int x^n\:dx=\dfrac{x^{n+1}}{n+1}

\displaystyle\hookrightarrow \int 1\:dx=x

And,

\displaystyle\hookrightarrow \int \dfrac{1}{x^2+1}\:dx=\arctan(x)

So,

\displaystyle\implies\int x^2\:dx-\int 1\:dx +\int \dfrac{1}{x^2+1}\:dx

\implies\dfrac{x^{2+1}}{2+1}-x+\arctan(x)+C

\implies\dfrac{x^3}{3}-x+\arctan(x)+C

Hence,

\displaystyle\bf\implies\int\dfrac{x^4}{1+x^2}\:dx=\dfrac{x^3}{3}-x+arctan(x)+C

OR

\displaystyle\bf\implies\int\dfrac{x^4}{1+x^2}\:dx=\dfrac{x^3}{3}-x+tan^{-1}(x)+C

Similar questions