Math, asked by ITZSnowyBoy, 5 days ago

Integrate the given function using integration by substitution: 2x sin(x2+ 1) with respect to x:​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\red{\rm :\longmapsto\:\displaystyle\int\rm \: 2x \: sin( {x}^{2} + 1) \: dx \: }

To evaluate this integral, we use Method of Substitution.

So, Substitute

 \green{\rm :\longmapsto\: {x}^{2} + 1 = y}

On differentiating both sides, we get

 \green{\rm :\longmapsto\: 2{x}dx  = dy}

So, on substituting these values in given integral, we get

\rm \:  =  \: \displaystyle\int\rm \: siny \: dy

\rm \:  =  \:  -  \: cosy \:  +  \: c

\rm \:  =  \:  -  \: cos( {x}^{2} + 1)  \:  +  \: c

Therefore,

\red{\:\boxed{ \tt{ \: \displaystyle\int\rm \: 2x \: sin( {x}^{2} + 1) \: dx =  -  \: cos( {x}^{2} + 1) + c \: }} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by princeankkr
0

Answer:

Hii

I want to be your friend

So would you like to be my friend

Similar questions