Math, asked by PragyaTbia, 1 year ago

Integrate the given function w.r.t. respective variable : sin⁴ x

Answers

Answered by MaheswariS
0

Answer:

\int{sin^4x}\:dx=\frac{3x}{8}+\frac{sin\:4x}{32}-\frac{sin2x}{4}+C

Step-by-step explanation:

\int{sin^4x}\:dx

=\int(sin^2x)^2\:dx

Using

\boxed{\begin{minipage}{4cm}$cos2A=1-2\:sin^2A\\ \\\:\implies\:sin^2A=\frac{1-cos2A}{2}$\end{minipage}}

=\int(sin^2x)^2\:dx

=\int(\frac{1-cos2x}{2})^2\:dx

=\int\frac{(1+cos^22x-2\:cos2x)}{4}\:dx

=\frac{1}{4}\int{(1+cos^22x-2\:cos2x)}\:dx

Using

\boxed{\begin{minipage}{4cm}$cos2A=2\:cos^2A-1\\ \\\:\implies\:cos^2A=\frac{1+cos2A}{2}$\end{minipage}}

=\frac{1}{4}\int{(1+\frac{1+cos4x}{2}-2\:cos2x)}\:dx

=\frac{1}{4}\int{\frac{2+1+cos4x-4\:cos2x}{2}}\:dx

=\frac{1}{8}\int(3+cos4x-4\:cos2x)\:dx

=\frac{1}{8}[3x+\frac{sin\:4x}{4}-4\:\frac{sin2x}{2}]+C

=\frac{3x}{8}+\frac{sin\:4x}{32}-\frac{sin2x}{4}+C

\implies\:\boxed{\int{sin^4x}\:dx=\frac{3x}{8}+\frac{sin\:4x}{32}-\frac{sin2x}{4}+C}

Answered by ujalasingh385
0

Answer:

\mathbf{\frac{3x}{8}+\frac{sin\:4x}{32}-\frac{sin2x}{4}+C}

Step-by-step explanation:

In this question

We have to integrate the function

\int{sin^4x}\:dx

=\int(sin^2x)^2\:dx

Using

\mathbf{\begin{minipage}{4cm}$cos2A=1-2\:sin^2A\\ \\\:\implies\:sin^2A=\frac{1-cos2A}{2}$\end{minipage}}

= \int(sin^2x)^2\:dx

= \int(\frac{1-cos2x}{2})^2\:dx

= \int\frac{(1+cos^22x-2\:cos2x)}{4}\:dx

= \frac{1}{4}\int{(1+cos^22x-2\:cos2x)}\:dx

Again Using

\mathbf{\begin{minipage}{4cm}$cos2A=2\:cos^2A-1\\ \\\:\implies\:cos^2A=\frac{1+cos2A}{2}$\end{minipage}}

= \frac{1}{4}\int{(1+\frac{1+cos4x}{2}-2\:cos2x)}\:dx

= \frac{1}{4}\int{\frac{2+1+cos4x-4\:cos2x}{2}}\:dx

= \frac{1}{8}\int(3+cos4x-4\:cos2x)\:dx

= \frac{1}{8}[3x+\frac{sin\:4x}{4}-4\:\frac{sin2x}{2}]+C

= \frac{3x}{8}+\frac{sin\:4x}{32}-\frac{sin2x}{4}+C

\implies\:\mathbf{\int{sin^4x}\:dx=\frac{3x}{8}+\frac{sin\:4x}{32}-\frac{sin2x}{4}+C}

Similar questions