Math, asked by papafairy143, 9 hours ago

Integrate the given function with respect to x

 {e}^{ {tan}^{ - 1} x} ( \frac{1 + x +  {x}^{2} }{1 +  {x}^{2} } )

Answers

Answered by mathdude500
32

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle\int\rm  {e}^{ {tan}^{ - 1}x }\bigg[\dfrac{1 + x +  {x}^{2} }{1 +  {x}^{2} } \bigg] \: dx

To solve this integral, we use Method of Substitution.

So, Substitute

\rm \:  {tan}^{ - 1}x = y

\rm \: x = tany

\rm \: dx =  {sec}^{2}y \: dy

So, on substituting these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm  {e}^{y}\bigg[\dfrac{1 + tany +  {tan}^{2}y }{1 +  {tan}^{2}y} \bigg] \:  {sec}^{2}y \: dy

We know,

\boxed{\tt{  {sec}^{2}x -  {tan}^{2}x = 1 \: }} \\

So, using this identity, we get

\rm \:  =  \: \displaystyle\int\rm  {e}^{y}\bigg[\dfrac{ tany +  {sec}^{2}y }{ {sec}^{2}y} \bigg] \:  {sec}^{2}y \: dy

\rm \:  =  \: \displaystyle\int\rm  {e}^{y}(tany +  {sec}^{2}y) \: dy

We know,

\boxed{\tt{ \displaystyle\int\rm  {e}^{x}[ \: f(x) + f'(x) \: ] \: dx \:  =  \:  {e}^{x}f(x) + c \: }} \\

So, here

\rm \: f(x) = tanx

and

\rm \: f'(x) =  {sec}^{2}x

So, using above result, we get

\rm \:  =  \:  {e}^{y} \: tany \:  +  \: c

\rm \:  =  \:  {e}^{ {tan}^{ - 1}x } \times x + c

\rm \:  =  \:  x \: {e}^{ {tan}^{ - 1}x } + c

Hence,

\boxed{\tt{ \displaystyle\int\rm  {e}^{ {tan}^{ - 1}x }\bigg[\dfrac{1 + x +  {x}^{2} }{1 +  {x}^{2} } \bigg] \: dx \:  = x {e}^{ {tan}^{ - 1}x}  + c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}


tejasgupta: Who would've thought such a complicated looking question would be so easy to solve Very well explained...
Answered by XxitzZBrainlyStarxX
7

Question:-

Integrate the given function with respect to x

\sf \large {e}^{ {tan}^{ - 1} x} ( \frac{1 + x + {x}^{2} }{1 + {x}^{2} } ).

Given:-

\sf \large \int  {e}^{ {tan}^{ - 1} x} ( \frac{1 + x + {x}^{2} }{1 + {x}^{2} } )

To Find:-

  • The value of x.

Solution:-

 \sf \large Let, I  =  \int e {}^{tan - 1 \: x} \bigg [ \frac{1 + x + x {}^{2} }{1 + x {}^{2} } \bigg ] dx

 \sf \large =  \int e {}^{tan - 1 \: x} \bigg [ \frac{1 + x {}^{2} }{1 + x {}^{2} } +  \frac{x}{1 + x {}^{2} }  \bigg ]dx

 \sf \large =  \int e {}^{tan - 1 \: x} dx +  \int e {}^{tan - 1 \: x} ( \frac{x}{1 + x {}^{2} } )dx

 \sf \large =  \int e {}^{tan - 1 \: x} .1 \: dx +  \int e {}^{tan - 1 \: x} ( \frac{x}{1 + x {}^{2} } )dx

 \sf \large = e {}^{tan - 1 \: x }  \int1 \: dx -  \int \bigg[ \frac{d}{dx}  \: e {}^{tan - 1 \: x} \int 1 \: dx \bigg ] +  \int e {}^{tan - 1 \: x} ( \frac{x}{1 +x {}^{2}  } )dx

 \sf \large = x.e {}^{tan - 1 \: x}  -  \int \frac{e {}^{tan - 1 \: x} }{1 + x {}^{2} }  \: x \: dx +  \int e {}^{tan - 1 \: x}

 \sf \large = x \: e {}^{tan - 1 \: x}  + c

Answer:-

{ \boxed{ \sf \large \green{\sf \large \int  {e}^{ {tan}^{ - 1} x} ( \frac{1 + x + {x}^{2} }{1 + {x}^{2} } )= x \: e {}^{tan - 1 \: x}  + c.}}}

Hope you have satisfied.

Similar questions