Math, asked by jatindevrajput, 1 year ago

Integrate the given question:

 \int \limits _{0}^{ \frac{\pi}{4} }  ln(1 + tan \: x) dx
plzz help me ​

Answers

Answered by Anonymous
1

Answer:

Hey mate please refer to the attachment

answer is →π/8 log 2

Attachments:
Answered by ShuravKDas
0

Answer:

I= \int\limits^\frac{\pi }{4} _0 {ln(1+tanx)} \, dx

= \int\limits^\frac{\pi }{4} _0 {ln(1+ tan(\frac{\pi }{4} - x))} \, dx

= \int\limits^\frac{\pi }{4} _0 {ln(1+ \frac{tan\frac{\pi }{4} - tanx }{1 + tan\frac{\pi }{4} tanx} )} \, dx

= \int\limits^\frac{\pi }{4} _0{ ln(\frac{\(1+tanx+1-tanx)}{{1+tanx)}} \, dx \\

= \int\limits^\frac{\pi }{4} _0 {ln(\frac{2}{1+tanx} )} \, dx

= \int\limits^\frac{\pi }{4} _0 {[ln2 - ln (1+tanx)]} \, dx

I = ㏑2× \int\limits^\frac{\pi }{4} _0 {x} \, dx - \int\limits^\frac{\pi }{4} _0 {ln(1+tanx)} \, dx

I = \frac{\pi ln2 }{4} - I

2I =  \frac{\pi ln2 }{4}

I = \frac{\pi ln2 }{8}             (Ans.)

Step-by-step explanation:

Similar questions