Math, asked by Anonymous, 4 months ago


Integrate the integral:
\int \dfrac{1}{\sqrt{x} \sqrt{1-x} }​

Answers

Answered by Anonymous
2

Step-by-step explanation:

We need to find,

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{x}\sqrt{1-x}}

or,

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{x-x^2}}

Pre-adding and subtracting \dfrac{1}{4} in the denominator surd,

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{\dfrac{1}{4}-\dfrac{1}{4}+x-x^2}}

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{\dfrac{1}{4}-\left(\dfrac{1}{4}-x+x^2\right)}}

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}-x\right)^2}}

or,

\displaystyle\longrightarrow I=\int\dfrac{dx}{\sqrt{\left(\dfrac{1}{2}\right)^2-\left(-x+\dfrac{1}{2}\right)^2}}

We have,

\displaystyle\int\dfrac{dx}{\sqrt{c^2-(ax+b)^2}}=\dfrac{1}{a}\sin^{-1}\left(\dfrac{ax+b}{c}\right)+C

Here,

a=-1

b=\dfrac{1}{2}

c=\dfrac{1}{2}

Hence,

\displaystyle\longrightarrow I=\dfrac{1}{-1}\sin^{-1}\left(\dfrac{-x+\dfrac{1}{2}}{\dfrac{1}{2}}\right)+C

\displaystyle\longrightarrow I=-\sin^{-1}\left(-2x+1\right)+C

Since \sin^{-1}(-x)=-\sin^{-1}x,

\displaystyle\longrightarrow\underline{\underline{I=\sin^{-1}\left(2x-1\right)+C}}

Answered by nazimakhan587
1

Answer:

who r u by the way plz tell me

Similar questions