Physics, asked by trinity03, 9 months ago

Integrate the integral (step-wise) -
(5x^{2}  - 8x + 5)dx


Answers

Answered by Anonymous
14

Given :

\bigstar\:\underline{\boxed{\bf{\dfrac{dy}{dx}=5x^2-8x+5}}}

To Find :

➳ We have to integrate the integral.

Remember :

:\implies\sf\:\dfrac{dp}{dq}=q^n+1

:\implies\sf\:p=\int(dp)=\int(q^n+1)\:dq

:\implies\bf\:p=\dfrac{q^{n+1}}{(n+1)}+q

SoluTion :

\leadsto\tt\:\dfrac{dy}{dx}=5x^2-8x+5

\leadsto\tt\:dy=(5x^2-8x+5)\:dx

\leadsto\tt\:y=\int(dy)=\int(5x^2-8x+5)\:dx

\leadsto\tt\:y=\dfrac{5x^{2+1}}{(2+1)}-\dfrac{8x^{1+1}}{(1+1)}+5x

\leadsto\tt\:y=\dfrac{5x^3}{3}-\dfrac{8x^2}{2}+5x

\leadsto\underline{\boxed{\bf{y=\dfrac{5x^3}{3}-4x^2+5x}}}

Answered by Anonymous
8

Given ,

The function is y = 5(x)² - 8x + 5

Integratraing y wrt x , we get

    \rightarrow \sf \int{5 {(x)}^{2} - 8x + 5 } \:  \: dx \\  \\ \rightarrow \sf 5\int{ {(x)}^{2}}    \: dx-  8\int{x}  \: dx+  \int{5} \:  dx \\  \\  \sf  \rightarrow 5 \{   \frac{ {(x)}^{2 + 1} }{2 + 1}  \} - 8 \{  \frac{ {(x)}^{1 + 1} }{1 + 1} \} + 5x\\  \\ \sf  \rightarrow 5  \{  \frac{ {(x)}^{3} }{3} \} - 8 \{  \frac{ {(x)}^{2} }{2} \} + 5x \\  \\ \sf  \rightarrow 5  \{  \frac{ {(x)}^{3} }{3} \} - 4 {(x)}^{2}  + 5x + c

Remmember :

 \sf \mapsto  \int{ {(x)}^{n} } \: dx =  \frac{ {(x)}^{n + 1} }{n + 1} \\ \\ \sf \mapsto  \int{ (k) } \: dx =  kx

Similar questions