Physics, asked by Anonymous, 6 months ago

Integrate the Question in attachment!​

Attachments:

Answers

Answered by kaushik05
6

To integrate :

 \star \:  \int \:  \dfrac{ \sin \: x -  \cos \: x}{ \sin \: x \:  +  \cos \: x} dx \\

Here ,

We use substitution method ;

Let

Sin x + cos x = t

Now differentiate w.r.t x both sides :

 \implies \:  \frac{d}{dx} ( \sin \: x +  \cos \: x) =  \frac{dt}{dx}  \\  \\  \implies (\cos \: x \:  -   \sin \: x)dx = dt \\  \\  \implies \:  - ( \sin \: x \:  -  \cos \: x)dx = dt \\  \\  \implies( \sin \: x -  \cos \: x)dx =  - dt

put the values :

 \implies \:  -  \int \:  \dfrac{dt}{t}  \\  \\  \implies \:  -   log(t)  + c

Now , put the value of t .

 \implies \:  -  log( \sin \: x +  \cos \: x)  + c.

Formula used :

 \star \bold{  \int \:  \dfrac{1}{x} dx =  log(x)  + c} \\  \\  \star \bold{  \dfrac{d}{dx}  \sin \: x =  \cos \: x} \\  \\

Similar questions