Math, asked by gman111, 10 months ago

Integrate the question in the picture:

Attachments:

Answers

Answered by Anonymous
22

Answer:

\large\bold\red{ a \:   { \tan }^{ - 1} ( \sqrt{ \frac{x}{a} } ) \:  { \sec }^{2}  \: ( { \tan}^{ - 1}  \sqrt{ \frac{x}{a} } ) -  \sqrt{ax}  + c}

Step-by-step explanation:

\displaystyle \int { \sin }^{ - 1}  \sqrt{ \frac{x}{a + x} } dx

Put,

x  = a { \tan }^{2}  \alpha

We get,

 = \displaystyle \int { \sin}^{ - 1}  \sqrt{ \frac{a { \tan }^{2}  \alpha }{  a(1 +  { \tan}^{2}  \alpha) } } dx \\  \\  \\  = \displaystyle \int { \sin }^{ - 1}  ( \sqrt{ \frac{ { \tan }^{2}  \alpha }{ { \sec }^{2} \alpha  } } )dx \\  \\  \\  = \displaystyle \int { \sin }^{ - 1} ( \sqrt{ { \sin }^{2} \alpha  })dx  \\  \\  \\  = \displaystyle \int  { \sin }^{ - 1}(  \sin \alpha )dx \\  \\  \\  = \displaystyle \int \alpha dx

Now,

We have,

x = a { \tan }^{2}  \alpha

Differentiating both sides,

We get,

 =  > dx = 2a \tan( \alpha )  { \sec }^{2}  \alpha d \alpha

Therefore,

Substituting the values,

We get,

 = 2a \displaystyle \int \alpha  \tan( \alpha )  { \sec}^{2}  \alpha d \alpha

Now,

Put,

 \tan( \alpha )  = t

Differentiating both the sides,

We get,

 =  >  { \sec }^{2}  \alpha d \alpha =  dt

Also,

 \alpha  =  { \tan }^{  - 1} t

Substituting all the values,

We get,

 = 2a\displaystyle \int t \: { \tan }^{ - 1}t \:  dt

Using the ILATE method,

And further solving,

We get,

 = 2a( { \tan}^{ - 1}t \displaystyle \int \: tdt - \displaystyle \int( \frac{d}{dt}  { \tan }^{ - 1} t\int \: dt)dt) \\  \\  \\  = 2a( \frac{ {t}^{2} }{2}  { \tan }^{ - 1} t - \displaystyle \int \frac{ {t}^{2} }{2}   \times  \frac{1}{1 +  {t}^{2} } dt) \\  \\  \\  = 2a(  \frac{ {t}^{2} }{2}   { \tan}^{ - 1} t - \displaystyle \int \frac{ {t}^{2} + 1 - 1 }{ {t}^{2} + 1 } dt) \\  \\  \\  = 2a( \frac{ {t}^{2} }{2} { \tan }^{ - 1}  t -  \frac{1}{2} \displaystyle \int \: dt +  \frac{1}{2} \displaystyle \int \frac{1}{1 +  {t}^{2} } dt) \\  \\  \\  = 2a (\frac{ {t}^{2} }{2}  { \tan }^{ - 1}t  -  \frac{t}{2}  +  \frac{1}{2}  { \tan }^{ - 1} t + c) \\  \\  \\  = a { \tan}^{ - 1} t( {t}^{2}  + 1 )-a t + c

Substituting the value of t,

We get,

 = a (1 +  { \tan }^{2} \alpha ) { \tan }^{ - 1} ( \tan\alpha )  - a \tan( \alpha )  + c \\  \\  \\  = a \:  \alpha  \:  { \sec }^{2}  \alpha  - a \tan( \alpha )  + c

Now,

Substituting the value of ,

 \alpha  =  { \tan }^{ - 1} \sqrt{ \frac{x}{a} }

We get,

 = a \:   { \tan }^{ - 1} ( \sqrt{ \frac{x}{a} } ) { \sec }^{2} ( { \tan}^{ - 1}  \sqrt{ \frac{x}{a} } )  - a \tan( { \tan}^{ - 1}  \sqrt{ \frac{x}{a} } )  + c \\  \\  \\  = a \:   { \tan }^{ - 1} ( \sqrt{ \frac{x}{a} } ) { \sec }^{2} ( { \tan}^{ - 1}  \sqrt{ \frac{x}{a} } ) - a \sqrt{ \frac{x}{a} }  + c \\  \\  \\ =  \large \boxed{ \bold{ a \:   { \tan }^{ - 1} ( \sqrt{ \frac{x}{a} } ) \:  { \sec }^{2}  \: ( { \tan}^{ - 1}  \sqrt{ \frac{x}{a} } ) -  \sqrt{ax}  + c}}

Where,

c is an integral constant.

Similar questions