Math, asked by BAAZ7466, 1 year ago

integrate the rational functions ~​

Attachments:

Answers

Answered by jayantsingh94
4

Answer:

Hello mate ,

see the above attachment! !

hope you got your solution! !

Thank you! !

Attachments:
Answered by Anonymous
9

Answer:

\large\bold\red{ \frac{ {x}^{2} }{2}  +  \frac{3}{2}  ln |x - 1|   +  \frac{1}{2}  ln |x + 1|   + c}

Step-by-step explanation:

Given,

\int \frac{ {x}^{3} + x + 1 }{ {x}^{2}  - 1} dx

Further simplifying,

We get,

 = \int \frac{ {x}^{3}  - x + 2x + 1}{ {x}^{2} - 1 } dx \\  \\  = \int \frac{x( {x}^{2}  - 1) + (2x + 1)}{( {x}^{2} - 1) } dx \\  \\  = \int xdx + \int \frac{2x}{ {x}^{2} - 1 } dx + \int \frac{1}{ {x}^{2}  - 1} dx

Therefore,

Putting the integral values of respective terms,

We get,

 =   \frac{ {x}^{2} }{2}  +  ln | {x}^{2} - 1 |  +  \frac{1}{2}  ln | \frac{x - 1}{x + 1} |  + c \\  \\  =  \frac{ {x}^{2} }{2}  +  ln |(x - 1)(x + 1)|   +  \frac{1}{2}   ln | \frac{x - 1}{x + 1} |  + c

But,

We know that,

  •  ln( \alpha  \beta )  =  ln( \alpha )  +  ln( \beta )
  •  ln( \frac{ \alpha }{ \beta } )  =  ln( \alpha )  -  ln( \beta )

Therefore,

We get,

 =  \frac{ {x}^{2} }{2}  +  ln |x - 1|   +  ln |x + 1|   +  \frac{1}{2}  |x - 1|  -  \frac{1}{2}  |x + 1|  + c \\  \\  =   \large\bold{ \frac{ {x}^{2} }{2}  +  \frac{3}{2}  ln |x - 1|   +  \frac{1}{2}  ln |x + 1|   + c}

Where,

C is integral constant

Similar questions