Math, asked by weeskrsm, 10 months ago

Integrate thefollowing question :
integrate 1/1+rootx

Answers

Answered by SujalSirimilla
0

Answer:

\sf \to \displaystyle \int \sf \dfrac{1}{1+\sqrt{x}}dx

Lets use substitution, x = t².

So, dx = 2tdt

\sf \to \displaystyle \int \sf \dfrac{2t}{1+\sqrt{t^2}}dt

\sf \to \displaystyle \int \sf \dfrac{2t}{1+t}dt

\sf \to 2 \displaystyle \int \sf \dfrac{t}{1+t}dt

Add and Subtract 1 on the numerator.

\sf \to 2 \displaystyle \int \sf \dfrac{t+1-1}{1+t}dt

\sf \to 2 \left( \displaystyle \int \sf \dfrac{t+1}{1+t}dt - \int \sf \dfrac{1}{1+t}dt \right)

\sf \to 2 \left( \displaystyle \int \sf dt - \int \sf \dfrac{1}{1+t}dt \right)

Formulas I am about to use:
\to \boxed{\bf{\displaystyle \int \bf dx = x}}

\to \boxed{\bf{\displaystyle \int \bf \dfrac{1}{x+(constant)}dx = ln(x+(constant))}}

Our Integral becomes:

\sf \to 2 \left( t - ln(t+1 \right))

x = t², so t = √x

\sf \to 2 \left( \sqrt{x}  - ln(\sqrt{x} +1 \right))

Answer:
\boxed{\pink{\bf \to 2 \left( \sqrt{x}  - ln(\sqrt{x} +1 \right))}}

Similar questions