Math, asked by hkrishnahazrape9rwv, 3 months ago

integrate this and show with steps ​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

 \displaystyle \:\bf :\longmapsto\:  \int \:  {2}^{ {2}^{ {2}^{x} } }  {2}^{ {2}^{x} }  {2}^{x} dx

Here we use method of Substitution

 \red{\rm :\longmapsto\:Put \:  {2}^{ {2}^{ {2}^{x} } }  = y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\:\dfrac{d}{dx}\:  {2}^{ {2}^{ {2}^{x} } }  =\dfrac{d}{dx} \:  y}

 \red{\rm :\longmapsto\: {2}^{ {2}^{ {2}^{x} } } log(2)  \dfrac{d}{dx} {2}^{ {2}^{x} }  = \dfrac{dy}{dx}}

\green{\boxed{ \because \:  \bf \: \dfrac{d}{dx} {a}^{x}  \:  =  \:  {a}^{x}loga}}

 \red{\rm :\longmapsto\: {2}^{ {2}^{ {2}^{x} } } log(2) {2}^{ {2}^{x} } log(2) \dfrac{d}{dx} {2}^{ {x} }  = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\: {2}^{ {2}^{ {2}^{x} } } \:  {2}^{ {2}^{x} } \:  {(log2)}^{2}  \dfrac{d}{dx} {2}^{ {x} }  = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\: {2}^{ {2}^{ {2}^{x} } } \:  {2}^{ {2}^{x} } \:  {(log2)}^{2} \:   {2}^{ {x} } \: log(2)   = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\: {2}^{ {2}^{ {2}^{x} } } \:  {2}^{ {2}^{x} } \:  {2}^{x} \:   {(log2)}^{3} \:  = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\: {2}^{ {2}^{ {2}^{x} } } \:  {2}^{ {2}^{x} } \:  {2}^{x} \:   {(log2)}^{3} \:dx \:   = dy}

 \red{\rm :\longmapsto\: {2}^{ {2}^{ {2}^{x} } } \:  {2}^{ {2}^{x} } \:  {2}^{x} \:    \:dx \:   = \dfrac{dy}{ {(log2)}^{3} } }

Thus,

The given integral can be rewritten as

 \displaystyle \:\bf :\longmapsto\:  \int \:  {2}^{ {2}^{ {2}^{x} } }  {2}^{ {2}^{x} }  {2}^{x} dx

 \displaystyle \: \rm \:  =  \:  \:  \int \: \: \dfrac{dy}{ {(log2)}^{3} }

 \displaystyle \:\rm \:  =  \:  \:  \dfrac{1}{ {(log2)}^{3} }  \:  \:  \int \: \: dy

 \displaystyle \:\rm \:  =  \:  \:  \dfrac{1}{ {(log2)}^{3} }  \:  \:  y + c

 \displaystyle \:\rm \:  =  \:  \:  \dfrac{1}{ {(log2)}^{3} }  \:  \:   {2}^{ {2}^{ {2}^{x} } }  + c

Additional Information :-

\green{\boxed{ \bf \:  \int \:k dx = kx+ c}}

\green{\boxed{ \bf \:  \int \:  {e}^{x} dx = {e}^{x}  + c}}

\green{\boxed{ \bf \:  \int \:  {a}^{x} dx = {a}^{x} log(a)   + c}}

\green{\boxed{ \bf \:  \int \:  \frac{1}{x} dx =logx + c}}

\green{\boxed{ \bf \:  \int \: sinxdx = - cosx + c}}

\green{\boxed{ \bf \:  \int \: cosxdx = sinx+ c}}

\green{\boxed{ \bf \:  \int \: secx \: tanxdx = secx+ c}}

\green{\boxed{ \bf \:  \int \:cosecx \: cotx dx =  -  \: cosecx \: + c}}

Similar questions