Integrate this expression
Attachments:
Answers
Answered by
1
the picture gives the answer
Attachments:
Answered by
0
Answer:
Step-by-step explanation:
∫e^2x-e^-2x dx / e^2x+e^-2x
dividing numerator and denominator with e^2x
∫1-e^-4x dx /1+e^-4x
∫dx/1+e^-4x + ∫-e^-4x dx /1+e^-4x
let y = 1+e^-4x
y-1=e^-4x
log y-1 =-4x
-1/4 log y-1 =x
∫dx/y
∫d(-1/4 log y-1) / y
∫-1/4 dy /y-1/y
-1/4∫dy/y-1*y
-1/4∫(1/y-1 - 1/y ) dy
-1/4{log y-1 - logy}
-1/4{log y-1/y}
-1/4{log e^-4x / 1+e^-4x}
∫dx/1+e^-4x = -1/4{log e^-4x / 1+e^-4x}
∫-e^-4x dx/1+e^-4x
1/4∫-4e^-4x dx /1+e^-4x
1/4log{1+e^-4x}
therefore ∫1-e^-4x/1+e^-4x
= -1/4{log e^-4x / 1+e^-4x}+1/4log{1+e^-4x}
Similar questions