Math, asked by nareshlohar777, 2 months ago

integrate this function​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

The given integral is

\rm :\longmapsto\:\displaystyle\int\tt  \frac{dx}{ \sqrt{x + 1}  -  \sqrt{x} }

To evaluate this integral, we use method of Rationalization.

\rm \:  =  \:  \: \displaystyle\int\tt  \frac{1}{ \sqrt{x + 1}  -  \sqrt{x} } \times  \frac{ \sqrt{x + 1} +  \sqrt{x}  }{ \sqrt{x + 1} +  \sqrt{x}  }  \: dx

\rm \:  =  \:  \: \displaystyle\int\tt  \frac{ \sqrt{x + 1}  +   \sqrt{x}  }{( \sqrt{x + 1} -  \sqrt{x} )( \sqrt{x + 1} +  \sqrt{x})}  \: dx

We know that

\boxed{ \rm{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this,

\rm \:  =  \:  \: \displaystyle\int\tt  \frac{ \sqrt{x + 1}  +   \sqrt{x}  }{( \sqrt{x + 1})^{2}  - (\sqrt{x} )^{2} }  \: dx

\rm \:  =  \:  \: \displaystyle\int\tt  \frac{ \sqrt{x + 1}  +   \sqrt{x}  }{x + 1 - x }  \: dx

\rm \:  =  \:  \: \displaystyle\int\tt  \frac{ \sqrt{x + 1}  +   \sqrt{x}  }{1}  \: dx

\rm \:  =  \:  \: \displaystyle\int\tt  \sqrt{x + 1}dx  + \displaystyle\int\tt  \sqrt{x} dx

\rm \:  =  \:  \: \displaystyle\int\tt  {\bigg((x + 1) \bigg) }^{\dfrac{1}{2} } dx+  \displaystyle\int\tt {\bigg(x \bigg) }^{\dfrac{1}{2} }dx

We know,

\boxed{ \rm{ \displaystyle\int\tt  {x}^{n}  \: dx \:  =  \frac{ {x}^{n + 1} }{n + 1} + c}}

\rm \:  =  \:  \: \dfrac{{\bigg(x + 1 \bigg) }^{\dfrac{1}{2}  + 1}}{\dfrac{1}{2}  + 1}  + \dfrac{{\bigg(x \bigg) }^{\dfrac{1}{2}  + 1}}{\dfrac{1}{2}  + 1}  + c

\rm \:  =  \:  \: \dfrac{{\bigg(x + 1 \bigg) }^{\dfrac{3}{2}}}{\dfrac{3}{2}}  + \dfrac{{\bigg(x \bigg) }^{\dfrac{3}{2}}}{\dfrac{3}{2}}  + c

\rm \:  =  \:  \: \dfrac{2}{3}{\bigg(x + 1\bigg) }^{\dfrac{3}{2} }  + \dfrac{2}{3}{\bigg(x\bigg) }^{\dfrac{3}{2} }  + c

Additional Information :-

\boxed{ \rm{ \displaystyle\int\tt sinx \: dx \:  =  -  \: cosx + c}}

\boxed{ \rm{ \displaystyle\int\tt cosx  \: dx \: =  \: sinx + c}}

\boxed{ \rm{ \displaystyle\int\tt cosecx cotx \: dx \: =  \:  -  \: cosecx + c}}

\boxed{ \rm{ \displaystyle\int\tt secx tanx \: dx \: =  \: \: secx + c}}

\boxed{ \rm{ \displaystyle\int\tt  {sec}^{2}x \: dx \:  =  \: tanx + c}}

\boxed{ \rm{ \displaystyle\int\tt  {cosec}^{2}x \: dx \:  =  -  \: cotx + c}}

Similar questions