Math, asked by Anonymous, 17 days ago

integrate this function

 \int x \: log \: x \: dx

Answers

Answered by ProximaNova
7

\LARGE\color{black}{\colorbox{#FF7968}{A}\colorbox{#4FB3F6}{N}\colorbox{#FEDD8E}{S}\colorbox{#FBBE2E}{W}\colorbox{#60D399}{E}\colorbox{#6D83F3}{R}}

 \int x \: log \: x \: dx

This can be integrated using integration by parts, using ILATE rule, logx be the first dunction and x be the second one

Thus,

\sf \bf :\longmapsto I = \int x \: log \: x \: dx

\displaystyle \sf \bf :\longmapsto I = logx\int x.dx−\int \left[ \dfrac{d}{dx} logx \int x.dx\right]dx

\displaystyle \sf \bf :\longmapsto I=\dfrac{x^2logx}{2} +C−\int \left(\dfrac{1}{x} . \dfrac{x^2}{2}+C_2\right).dx

\displaystyle \sf \bf :\longmapsto I=\dfrac{x^2logx}{2}−\int\left[\dfrac{x}{2}+C_2\right]dx

\sf \bf :\longmapsto I=\dfrac{x^2logx}{2}−\dfrac{x^2}{4}+ C

\boxed{\sf \bf\int x \: log \: x \: dx =\dfrac{x^2logx}{2} - \dfrac{x^2}{2}+C}

Formulas used,

\boxed{\begin{array}{c|c|c} \sf \bf \int f(x)g(x) dx& =& \sf \bf f(x)\int g(x)dx-\int[f'(x)\int g(x)dx]dx \\ \sf \bf \dfrac{d}{dx}logx & = & \sf \bf\dfrac{1}{x}\\ \sf \bf \int x^n dx & = & \sf \bf\dfrac{x^{n+1}}{n+1}\end{array}}

Similar questions