Math, asked by kunaldhyani2002, 1 month ago

Integrate this Integrand wrt x​

Attachments:

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{I=\displaystyle\int\dfrac{2\,sin(x)}{(3+sin(2x))}\,dx}

\tt{\implies\,I=\displaystyle\int\dfrac{2\,sin(x)}{3+sin(2x)}\,dx}

\tt{\implies\,I=\displaystyle\int\dfrac{2\,sin(x)}{3+sin(2x)}\,dx}

\tt{\implies\,I=\displaystyle\int\dfrac{sin(x)-cos(x)+sin(x)+cos(x)}{3+sin(2x)}\,dx}

\tt{\implies\,I=\displaystyle\int\dfrac{sin(x)+cos(x)}{3+sin(2x)}\,dx-\int\dfrac{cos(x)-sin(x)}{3+sin(2x)}\,dx}

\tt{\implies\,I=I_{1}-I_{2}}

\bold{\sf{\bullet\,\,\green{Solving\,\,\,\tt{I_{1}}}\,:}}

\tt{\implies\,I_{1}=\displaystyle\int\dfrac{sin(x)+cos(x)}{3+sin(2x)}\,dx}

\tt{\implies\,I_{1}=\displaystyle\int\dfrac{sin(x)+cos(x)}{4-1+sin(2x)}\,dx}

\tt{\implies\,I_{1}=\displaystyle\int\dfrac{sin(x)+cos(x)}{4-1+2\,sin(x)\,cos(x)}\,dx}

\tt{\implies\,I_{1}=\displaystyle\int\dfrac{sin(x)+cos(x)}{4-\{1-2\,sin(x)\,cos(x)\}}\,dx}

\tt{\implies\,I_{1}=\displaystyle\int\dfrac{sin(x)+cos(x)}{4-\{sin(x)-cos(x)\}^2}\,dx}

\sf{\blue{Put\,\,\, sin(x)-cos(x)=t}}

\sf{\implies\blue{ (cos(x)+sin(x))dx=dt}}

So,

\tt{I_{1}=\displaystyle\int\dfrac{dt}{4-t^2}}

\tt{\implies\,I_{1}=\displaystyle\int\dfrac{dt}{(2)-(t)^2}}

\tt{\implies\,I_{1}=\ln\left|\dfrac{2+t}{2-t}\right|+c_{1}}

\tt{\implies\,I_{1}=\ln\left|\dfrac{2+sin(x)-cos(x)}{2-sin(x)+cos(x)}\right|+c_{1}}

\bold{\sf{\bullet\,\,\green{Solving\,\,\,\tt{I_{2}}}\,:}}

\tt{I_{2}=\displaystyle\int\dfrac{cos(x)-sin(x)}{3+sin(2x)}\,dx}

\tt{\implies\,I_{2}=\displaystyle\int\dfrac{cos(x)-sin(x)}{2+1+2\,sin(x)\,cos(x)}\,dx}

\tt{\implies\,I_{2}=\displaystyle\int\dfrac{cos(x)-sin(x)}{2+\{sin(x)+cos(x)\}^{2}}\,dx}

\sf{\blue{Put\,\,\, sin(x)+cos(x)=u}}

\sf{\implies\blue{(cos(x)-sin(x))\,dx=du}}

So,

\tt{I_{2}=\displaystyle\int\dfrac{du}{2+(u)^{2}}}

\tt{\implies\,I_{2}=\displaystyle\int\dfrac{du}{\left(\sqrt{2}\right)^2+\left(u\right)^{2}}}

\tt{\implies\,I_{2}=\dfrac{1}{\sqrt{2}}\,tan^{-1}\left(\dfrac{u}{\sqrt{2}}\right)}

\tt{\implies\,I_{2}=\dfrac{1}{\sqrt{2}}\,tan^{-1}\left\{\dfrac{sin(x)+cos(x)}{\sqrt{2}}\right\}+c_{2}}

Now,

\tt{\implies\,I=I_{1}-I_{2}}

\tt{\implies\,I=\ln\left|\dfrac{2+sin(x)-cos(x)}{2-sin(x)+cos(x)}\right|+c_{1}-\dfrac{1}{\sqrt{2}}\,tan^{-1}\left\{\dfrac{sin(x)+cos(x)}{\sqrt{2}}\right\}-c_{2}}

Put \sf{C=c_{1}-c_{2}}

\tt{\implies\,I=\ln\left|\dfrac{2+sin(x)-cos(x)}{2-sin(x)+cos(x)}\right|-\dfrac{1}{\sqrt{2}}\,tan^{-1}\left\{\dfrac{sin(x)+cos(x)}{\sqrt{2}}\right\}+C}

Similar questions