Math, asked by Prashantdwivedi2206, 1 year ago

integrate this question

Attachments:

Answers

Answered by ramanujan67
1

hope it will be help ful for u..

Attachments:
Answered by Anonymous
3

Topic:

Integration

Solution:

We need to evaluate the following integral.

\displaystyle\int_0^{\pi/2} \sin^2(x)\ dx

To solve this integral, we use the following formula,

\boxed{\sin^2(x) = \dfrac{1- \cos(2x)}{2}}

Using this, we get:
\displaystyle\longrightarrow\int_0^{\pi/2} \dfrac{1-\cos(2x)}{2}\ dx

\displaystyle\longrightarrow\int_0^{\pi/2}\dfrac12 -  \dfrac{\cos(2x)}{2}\ dx

\displaystyle\longrightarrow\int_0^{\pi/2}\dfrac12 \, dx -\int_0^{\pi/2}  \dfrac{\cos(2x)}{2}\ dx

Using the following identities:
\boxed{\int x^n\ dx = \dfrac{x^{n+1}}{n+1} + C}

\boxed{\int\cos(ax) \ dx = \dfrac{\sin(ax)}{a } +C}

We get the following result:

\displaystyle\longrightarrow\dfrac12 \Big(x\Big)_0^{\pi/2} -\bigg( \dfrac{\sin(2x)}{2\times 2}\bigg)_0^{\pi/2}

\displaystyle\longrightarrow\dfrac12 \Big(\dfrac{\pi}{2} - 0\Big) -\bigg( \dfrac{\sin(\pi)}{4} - \dfrac{\sin(0)}{4}\bigg)

\displaystyle\longrightarrow\dfrac\pi4-(0-0)

\displaystyle\longrightarrow\dfrac\pi4

This is the required answer.

Similar questions