integrate this question
Answers
In this problem ,
we need to change both sinx and tanx
with half angle formula ,
sinx=(2tanx/2)/(1+tan^2(x/2))
or
tanx= (2tanx/2)/(1-tan^2(x/2))
Now, put the value in given question
then , we use substitution
so, Let tanx/2 =t
=sec^2x/2 dx=2dt
=(1+tan^2(x/2))dx=2dt
【sec^2x-tan^2x=1】
=dx= 2dt/1+t^2
now put the value ..
formula:
soln refers to the attachment
Let
dx
I =∫-------------------------
sinx + tanx
dx
=∫----------------------------
sinx
( sinx + ------------)
cosx
dx
=∫ --------------------------------------
( sinx cosx +sinx)/cosx
cosx dx
=∫----------------------------
sinx (1+ cosx)
sinx cosx
=∫-----------------------------dx
sin²x (1 +cosx)
sinx cosx
=∫--------------------------------dx
(1-cos²x)(1+cosx)
sinx cosx
=∫--------------------------------------------dx
(1+cosx)(1-cosx)(1+cosx)
sinx cosx
=∫--------------------------------------dx
(1+cosx)² (1-cosx)
let cosx=t
- sinx dx=dt
sinx dx =-dt
-dt
I=∫--------------------
(1+t)² (1-t)
dt
=-∫------------------------
(1+t)² (1-t)
Now we do partial fraction kindly see attachement for working of partial fraction
1 1/4 1/2 1/4
-----------------=-------- - --------- + ----------
(1+t)²(1-t) 1+t (1+t)² (1-t)
now
1 1 1 1 1
I=-1/4∫------- dt + ----∫----------dt- ----∫-------dt
1+t 2 (1+t)² 4 1-t
1 1 - 1 1
=- -----log(1+t) + ----( -------) - ------- log(1-t)
4 2 1+t (- 4)
+c
- 1 1
= ----------- + -----{ log(1-t) -log(1+t)}+c
2(1+t) 4
- 1 1 1-cosx
=----------------- +------ log(----------------- ) +c
2(1+cosx) 4 1+cosx
Hope it helps u
Thanks