Math, asked by mehakuppal, 10 months ago

integrate this question ​

Attachments:

Answers

Answered by Anonymous
5

AnswEr :

Given Expression,

 \displaystyle \sf l =  \int \dfrac{dx}{ \sqrt{x}  + x}

The expression can be re-written as :

  \implies \: \displaystyle \sf l =  \int \dfrac{dx}{ \sqrt{x}(1  +  \sqrt{x} )}

Let us assume u = √x + 1.

Differentiating w.r.t x on both sides,

 \sf \dfrac{du}{dx}  =  \dfrac{1}{2 \sqrt{x} }  \\  \\  \longrightarrow \:  \sf \: dx = 2 \sqrt{x}.du

Now,

  \implies \: \displaystyle \sf l =  \int \dfrac{1}{ \cancel{ \sqrt{x}}(u )}  \times 2  \cancel{\sqrt{x}} du \\  \\    \implies \: \displaystyle \sf l =2  \int \dfrac{1}{u }du \\  \\  \implies \:  \sf \: l = 2  \times log(u) \\  \\  \implies \:  \sf \: l = 2log(1   +  \sqrt{x} ) + c

Answered by Rohith200422
9

Question:

I  = ∫  \frac{dx}{ \sqrt{x} + x }

Answer:

 \boxed{I = 2log(1 +  \sqrt{x} ) + c}

Step-by-step explanation:

I  = ∫  \frac{dx}{ \sqrt{x} + x }

\longrightarrow I  = ∫  \frac{dx}{  \sqrt{x}(1 +  \sqrt{x})  }

\underline\bold{u =  \sqrt{x} + 1}

\longrightarrow  \frac{du}{dx}  =  \frac{1}{2 \sqrt{x} }

\longrightarrow \underline{dx = 2 \sqrt{x}  \times du}

Thus,

I  = ∫  \frac{1}{ \sqrt{x}(u) }  \times 2 \sqrt{x} du

 = 2 \times ∫  \frac{1}{u} du

 = 2 \times log(u)

\longrightarrow\boxed{I = 2log(1 +  \sqrt{x} ) + c}

Similar questions