Math, asked by Anonymous, 7 months ago

integrate this
∫ \frac{ {sec}^{2}x }{ {cosec}^{2}x } dx

Answers

Answered by Anonymous
2

\green{\bold{\underline{ ☆        UPSC-ASPIRANT ☆ }}}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-integrate this

∫ \frac{ {sec}^{2}x }{ {cosec}^{2}x } dx

\huge\tt\underline\blue{ANSWER }

------>>>>Here is your answer<<<<--------

∫ \frac{ {sec}^{2} x}{ {cosec}^{2}x } dx

∫ \frac{ {sec}^{2}x }{ {cosec}^{2} x} dx = ∫ \frac{1}{ {cos}^{2}x }  \times  </p><p>\frac{ {sin}^{2}x }{1} dx

∫ {tan}^{2} x \: dx = ∫( {sec}^{2} x - </p><p>1)dx

 = tanx - x + c

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by tabassumnazia234
1

Answer:

⟹∫ \frac{ {sec}^{2} x}{ {cosec}^{2}x } dx∫cosec2xsec2xdx

⟹ ∫ \frac{ {sec}^{2}x }{ {cosec}^{2} x} dx = ∫ \frac{1}{ {cos}^{2}x } \times \frac{ {sin}^{2}x }{1} dx∫cosec2xsec2xdx=∫cos2x1×1sin2xdx

⟹ ∫ {tan}^{2} x \: dx = ∫( {sec}^{2} x - 1)dx∫tan2xdx=∫(sec2x−1)dx

⟹ = tanx - x + c=tanx−x+c ✓

Similar questions