Math, asked by Anonymous, 1 month ago

Integrate using u substitution method

  \displaystyle\int x \sqrt{x + 2}  \:  \: dx

Need step by step explained answer.​

Answers

Answered by amitkumar44481
106

SolutioN :

 \rightarrow \tt \:  \:   \int x \sqrt{x + 2} \, dx \\

Let,

  \bullet \tt \:  \:    \sqrt{x + 2}  = u \\

  \rightarrow \tt \:  \:    x + 2 =  {u}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - (1) \\  \\

  \rightarrow \tt \:  \:    x =  {u}^{2}  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (2) \\  \\

  \rightarrow \tt \:  \:    dx =  2u\,du   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (3)  \\  \\

⚝ Now, Substitute the value from ( 1 ) , ( 2 ) and ( 3 )

 \rightarrow \tt \:  \:   \int ( {u}^{2}  - 2)(u)(2u)\, du \\ \\

 \rightarrow \tt \:  \:   \int (2 {u}^{4}  - 4 {u}^{2} )\, du \\ \\

 \rightarrow \tt \:  \:   2\int  {u}^{4} \,du - 4\int {u}^{2} \, du \\ \\

 \rightarrow \tt \:  \: \bigg( \frac{2}{5}  \times   {u}^{5}\bigg) - \bigg(\frac{4}{3}  \times  {u}^{3} \bigg) + c \\ \\

 \rightarrow \tt \:  \: \bigg( \frac{2}{5}  \times   {(x + 2)}^{ \frac{5}{2} } \bigg)-  \bigg( \frac{4}{3}  \times  {(x + 2)}^{ \frac{3}{2} } \bigg)+ c

Similar questions