Math, asked by ishantsisharma2129, 11 hours ago

Integrate W.R. to x the following: sin³x​

Answers

Answered by vikkiain
0

\frac{cos^{3} x}{3}  - cosx + c

Step-by-step explanation:

we \:  \: know \:  \:  \boxed{sin ^{2}x = 1 - cos^{2}x  } \\ Now, \:  \: \int sin^{3} xdx   \\ =  \int sin^{2}x.sinxdx \\  =  \int (1 - cos^{2}x )sinxdx \\ let, \: y = cosx \\ Differentiating \:  \:  with \:  \:  respect \:  \:  to \:  \:  x \\ dy = - sinxdx \\  - dy = sinxdx \\ putting \:  \: values \\   - \int (1 -  {y}^{2} )dy \\ =  \int ( {y}^{2} - 1 )dy \\  =   \frac{ {y}^{3} }{3}  - y + c \\ putting \:  \: value \:  \: of \:  \: y  \:  \: then  \\  =  \frac{cos^{3} x}{3}  - cosx + c

Similar questions