Math, asked by shahulhameedizad, 2 months ago

integrate with respect to log x/x^2​

Answers

Answered by mathdude500
2

Given Question ;-

\tt \:   \longrightarrow \:Evaluate \:    \int \: \dfrac{logx}{ {x}^{2} } dx

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Integration by Parts

Integration by Parts is a special method of integration that is often useful when two functions are multiplied together, but is also helpful in other ways.

✏️See the rule:

✏️ ∫u v dx = u∫v dx −∫u' (∫v dx) dx

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E - Exponential functions

The alphabet which comes first is choosen as u and other as v.

─━─━─━─━─━─━─━─━─━─━─━─━─

 \boxed{\tt \:   \longrightarrow \:\dfrac{d}{dx}logx = \dfrac{1}{x} }

 \boxed{\tt \:   \longrightarrow \:\int \:  {x}^{n} dx = \dfrac{ {x}^{ n+ 1} }{ n+1 }    + c}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt \:   \longrightarrow \: \int \: \dfrac{1}{ {x}^{2} }  log(x) dx

\tt \: =  log(x)\int\dfrac{1}{ {x}^{2} }  dx \:  - \int \bigg(\dfrac{d}{dx}log(x)\int\dfrac{1}{ {x}^{2} dx}  \bigg)dx

\tt \:   = log(x)\int {x}^{ - 2} dx - \int \bigg( \dfrac{1}{x} \int {x}^{ - 2} dx\bigg)dx

\tt \:   = log(x)\dfrac{ {x}^{ - 2 + 1} }{ - 2 + 1}  - \int(\dfrac{1}{x}  \times \dfrac{ {x}^{ - 2 + 1} }{ - 2 + 1} )dx

\tt \:   =  -  \: \dfrac{log(x)}{x}  + \int\dfrac{1}{x}  \times \dfrac{1}{x} dx

\tt \:   =  -  \: \dfrac{log(x)}{x}  + \int \:  {x}^{ - 2} dx

\tt \:   =  -  \: \dfrac{log(x)}{x}  + \dfrac{ {x}^{ - 2 + 1} }{ - 2 + 1}  + c

\tt \:   =  -  \: \dfrac{log(x)}{x}  + \dfrac{ {x}^{ - 1} }{ - 1}  + c

\tt \:   =  -  \: \dfrac{log(x)}{x}   -  \dfrac{ 1 }{ x}  + c

\tt \:   =  - \dfrac{1}{x} ( log(x)  + 1) + c

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions