Math, asked by radhika2468, 17 days ago

Integrate with respect to x

tan2x tan (x-a) tan(x+a)

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm tan2x \: tan(x - a) \: tan(x + a) \: dx \\

Now, to evaluate this integral,

We know,

\rm \: 2x = x + a + x - a \\

\rm\implies \:tan2x = tan[(x + a) + (x - a)] \\

\rm \: tan2x = \dfrac{tan(x + a) + tan(x - a)}{1 - tan(x + a) \: tan(x - a)}  \\

\rm \: tan2x - tan2xtan(x + a)tan(x - a) = tan(x + a) + tan(x - a) \\

So,

\rm \: tan2xtan(x + a)tan(x - a) = tan2x - tan(x + a) - tan(x - a) \\

Hence, given integral

\rm \: \displaystyle\int\rm tan2x \: tan(x - a) \: tan(x + a) \: dx \\

can be rewritten as

\rm \: =  \:  \displaystyle\int\rm[ tan2x -  \: tan(x - a) -  \: tan(x + a) ]\: dx \\

\rm \:  =  \: \dfrac{log |sec2x| }{2} - log |sec(x  -  a)|  - log |sec(x  +  a)|  + c \\

Hence,

\color{green}\rm\implies \:\displaystyle\int\rm tan2x \: tan(x - a) \: tan(x + a) \: dx \\  \\ \color{green}\rm \:  =  \: \dfrac{log |sec2x| }{2} - log |sec(x  -  a)|  - log |sec(x  +  a)|  + c \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}  \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm tanx \: dx \:  =  \: log |secx|  \:  +  \: c \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by Prettyprincess96
1

Answer:

Let I=∫tan(x−a)tan(x+a)tan2xdx

As 2x=(x+a)+(x−a)⇒tan2x=

1−tan(x+a)tan(x−a)

tan(x+a)+tan(x−a)

⇒tan2x−tan(x+a)−tan(x−a)=tan2xtan(x+a)tan(x−a)

Therefore

I=∫[tan2x−tan(x+a)−tan(x−a)]dx

=

2

1

logsec2x−logsec(x+a)−logsec(x−a)

=log{

sec2x

cos(x+a)cos(x−a)}.

hope it helps

please mark me as brainlist

please mark as brainlist

Similar questions