Math, asked by guptaananya2005, 1 month ago

Integrate with respect to x

 \frac{ {e}^{2x}  - 1}{ {e}^{2x}  + 1}

Please don't spam.

Quality answer needed



Answers

Answered by mathdude500
4

  \green{\large\underline{\sf{Solution-}}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm \frac{{e}^{2x} - 1}{{e}^{2x} + 1} \: dx

To evaluate this integral, Divide numerator and denominator by e^x, so we get

\rm \:  =  \: \displaystyle\int\rm\dfrac{\dfrac{{e}^{2x} - 1}{{e}^{x}} }{\dfrac{{e}^{2x} + 1}{{e}^{x}} } \: dx

\rm \:  =  \: \displaystyle\int\rm\dfrac{\dfrac{{e}^{2x}}{{e}^{x}} -  \dfrac{1}{{e}^{x}} }{\dfrac{{e}^{2x}}{{e}^{x}} +  \dfrac{1}{{e}^{x}} } \: dx

\rm \:  =  \: \displaystyle\int\rm \frac{{e}^{x} - {e}^{ - x}}{{e}^{x} + {e}^{ - x}}  \: dx

Now, to evaluate this, we use Method of Substitution

So, Substitute

\red{\rm :\longmapsto\:{e}^{x} + {e}^{ - x} = y}

On differentiating both sides w. r. t. x, we get

\red{\rm :\longmapsto\:({e}^{x} - {e}^{x})dx = dy}

On substituting all the values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm \:  \frac{dy}{y}

\rm \:  =  \: log |y|  + c

\rm \:  =  \: log\bigg |{e}^{x} + {e}^{ - x}\bigg|  + c

Hence,

\rm \implies\:\boxed{ \tt{ \: \displaystyle\int\rm \frac{{e}^{2x} - 1}{{e}^{2x} + 1} \: dx = log\bigg |{e}^{x} + {e}^{ - x}\bigg|  + c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Answered by Diliptalapda
1

Step-by-step explanation:

this is an answer for this question.

download snapsolve app and get the all solutions.snap your problems and get the all solutions.OKdon't spam.I say for your good.

Attachments:
Similar questions