Math, asked by guptaananya2005, 1 month ago

Integrate with respect to x
 \frac{ {x}^{2}  + 4}{ {x}^{2} + 16 }
It's a humble request, please don't spam.

Let me to get my queries solved.

It's a humble request. ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {x}^{2}  + 4}{ {x}^{4}  + 16} dx

To evaluate this integral,

\rm :\longmapsto\:Divide \: numerator \: and \: denominator \: of \:  {x}^{2}

\rm \:  =  \: \displaystyle\int\rm  \frac{1 +  \dfrac{4}{ {x}^{2} } }{ {x}^{2} +  \dfrac{16}{ {x}^{2} } }  \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{1 +  \dfrac{4}{ {x}^{2} } }{ {x}^{2} +   {\bigg[\dfrac{4}{x} \bigg]}^{2}  }  \: dx

We know,

\boxed{ \tt{ \:  {x}^{2} +  {y}^{2} =  {(x - y)}^{2} + 2xy \: }}

So, using this identity, in denominator, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{1 +  \dfrac{4}{ {x}^{2} } }{ {\bigg[x - \dfrac{4}{x} \bigg]}^{2}  + 2 \times x \times \dfrac{4}{x} }  \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{1 +  \dfrac{4}{ {x}^{2} } }{ {\bigg[x - \dfrac{4}{x} \bigg]}^{2}  + 8 }  \: dx

Now, we Substitute

\red{\rm :\longmapsto\:x - \dfrac{4}{x} = y}

On differentiating both sides w. r. t. x, we get

\red{\rm :\longmapsto\:1 + \dfrac{4}{ {x}^{2} } = \dfrac{dy}{dx}}

\red{\rm :\longmapsto\:\bigg(1 + \dfrac{4}{ {x}^{2} }\bigg)dy = dx}

So, on substituting all these values, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{dy}{ {y}^{2}  + 8}

\rm \:  =  \: \displaystyle\int\rm  \frac{dy}{ {y}^{2}  +  {(2 \sqrt{2}) }^{2} }

We know,

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c \: }}

So, using this, we get

\rm \:  =  \: \dfrac{1}{2 \sqrt{2} }  {tan}^{ - 1} \dfrac{y}{2 \sqrt{2} }  + c

\rm \:  =  \: \dfrac{1}{2 \sqrt{2} }  {tan}^{ - 1} \dfrac{x - \dfrac{4}{x} }{2 \sqrt{2} }  + c

\rm \:  =  \: \dfrac{1}{2 \sqrt{2} }  {tan}^{ - 1} \dfrac{\dfrac{ {x}^{2}  - 4}{x} }{2 \sqrt{2} }  + c

\rm \:  =  \: \dfrac{1}{2 \sqrt{2} }  {tan}^{ - 1} \dfrac{ {x}^{2}  - 4 }{2 \sqrt{2} x}  + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions