Math, asked by sinchanakk7, 8 months ago

Integrate
with respect to x
x/(x - 1)(x − 2)(x – 3)​

Answers

Answered by Anonymous
25

Given Integrand,

 \displaystyle \int \sf \dfrac{x}{(x - 1)(x - 2)(x - 3)} dx

We know that,

 \boxed{ \boxed{ \displaystyle \int \sf \dfrac{ {ax}^{2}  + bx + c}{(x - p)(x - q)(x - r)} dx = \int \bigg( \dfrac{A}{x - p}  +  \dfrac{B}{x - q}  +  \dfrac{C}{x - r} \bigg)dx }}

Therefore,

 \implies \displaystyle  \sf \dfrac{x}{(x - 1)(x - 2)(x - 3)} =  \dfrac{a}{x - 1}  +  \dfrac{b}{x - 2}  +  \dfrac{c}{x - 3}  \\  \\  \implies \sf \: \dfrac{x}{ \cancel{(x - 1)(x - 2)(x - 3)}} =  \dfrac{a(x - 2)(x - 3) + b(x - 1)(x - 3) + c(x - 2)(x - 1)}{ \cancel{(x - 1)(x - 2)(x -3)}}  \\  \\  \implies \sf \: x = a(x - 2)(x - 3) + b(x - 1)(x - 3) + c(x - 2)(x - 1) -  -  -  - (1)

Putting x = 1 in equation (1),

  \longrightarrow \sf \: 1 = a(1 - 2)(1 - 3) + b(1 - 1)(1 - 3) + c(1 - 2)(1- 1)  \\  \\  \longrightarrow \sf \: 1 = 2a \\  \\  \longrightarrow \sf \: a =  \dfrac{1}{2}

Putting x = 2,

  \longrightarrow \sf \: 2= a(2 - 2)(2 - 3) + b(2 - 1)(2 - 3) + c(2 - 2)(2- 1)  \\  \\  \longrightarrow \sf \: 2 =  - b \\  \\  \longrightarrow \sf \: b =  -  2

Putting x = 3,

  \longrightarrow \sf \: 3= a(3- 2)(3 - 3) + b(3 - 1)(3 - 3) + c(3 - 2)(3- 1)  \\  \\  \longrightarrow \sf \: 3 =  2c \\  \\  \longrightarrow \sf \:c =  \dfrac{3}{2}

The integrand can be rewritten as :

 \implies \displaystyle  \int \sf \dfrac{x}{(x - 1)(x - 2)(x - 3)}dx =  \int \bigg( \dfrac{1}{2(x - 1)}   -   \dfrac{2}{x - 2}  +  \dfrac{3}{2(x - 3)}   \bigg)dx

We know that,

  \star \:  \boxed{ \displaystyle \int \sf \dfrac{dx}{x}  =  ln(x)  + c}

Thus,

 \implies  \boxed{ \boxed{\sf \:  \dfrac{1}{2}  ln(x - 1)  - 2 ln(x - 2)  +  \dfrac{3}{2}  ln(x - 3)  + c}}


Vamprixussa: :meow-wow:
Answered by Anonymous
117

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{\int \dfrac{x}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}dx}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int \dfrac{x}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}dx=\dfrac{1}{2}\ln \left|x-1\right|+\dfrac{3}{2}\ln \left|x-3\right|-2\ln \left|x-2\right|+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\bigstar \text { Apply u - substitution: } u=x-2

Integral Substitution definition :

\sf{\int \:f\left(g\left(x\right)\right)\cdot \:g^'\left(x\right)dx=\int \:f\left(u\right)du,\:\quad \:u=g\left(x\right)}

\mathrm{Substitute:}\:u=x-2

\sf{\dfrac{du}{dx} = 1}

      \Rightarrow \:du=1dx

      \Rightarrow \:dx=1du

=\int \dfrac{x}{\left(x-1\right)u\left(x-3\right)}\cdot \:1du

\sf{=\int \ffrac{x}{u\left(x-1\right)\left(x-3\right)}du}

\bf{u=x-2 \Rightarrow x=u+2}

=\int \dfrac{u+2}{u\left(u+2-1\right)\left(u+2-3\right)}du

\sf{=\int \dfrac{u+2}{u\left(u+1\right)\left(u-1\right)}du}

________________________--__________

\bigstar\text { Expand } \dfrac{u+2}{u(u+1)(u-1)}

\text { Apply the fraction rule: } \dfrac{a \pm b}{c}=\dfrac{a}{c} \pm \dfrac{b}{c}

\sf{=\dfrac{u}{u\left(u+1\right)\left(u-1\right)}+\dfrac{2}{u\left(u+1\right)\left(u-1\right)}}

________________________--__________

\bigstar \mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

\sf{=\int \dfrac{u}{u\left(u+1\right)\left(u-1\right)}du+\int \dfrac{2}{u\left(u+1\right)\left(u-1\right)}du}

________________________--__________

\bigstar\: \sf{Simplify\:\int \dfrac{u}{u\left(u+1\right)\left(u-1\right)}du}

\mathrm{Cancel\:the\:common\:factor:}\:u

=\int \dfrac{1}{\left(u+1\right)\left(u-1\right)}du

\text { Expand }(u+1)(u-1): u^{2}-1

=\int \dfrac{1}{u^2-1}du

u^{2}-1=-\left(-u^{2}+1\right)

=\int \dfrac{1}{-\left(-u^2+1\right)}du

\text { Take the constant out: } \int a \cdot f(x) d x=a \cdot \int f(x) d x

=-\int \dfrac{1}{-u^2+1}du

\text { Use the common integral: } \int \dfrac{1}{-y^{2}+1} d u=\dfrac{\ln |u+1|}{2}-\dfrac{\ln |u-1|}{2}

\sf{=-\left(\dfrac{\ln \left|u+1\right|}{2}-\dfrac{\ln \left|u-1\right|}{2}\right)}

________________________--__________

\bigstar\:\sf{Simplify\:-\left(\dfrac{\ln \left|u+1\right|}{2}-\dfrac{\ln \left|u-1\right|}{2}\right)}

Distribute parentheses

$=-\left(\dfrac{\ln |u+1|}{2}\right)-\left(-\dfrac{\ln |u-1|}{2}\right)$

Apply minus - plus rules

$-(-a)=a,-(a)=-a$

$=-\dfrac{\ln |u+1|}{2}+\dfrac{\ln |u-1|}{2}$

$=-\dfrac{1}{2} \ln |u+1|+\dfrac{1}{2} \ln |u-1|$

________________________--__________

\bigstar\:\:\sf{Simplify\:\int \dfrac{2}{u\left(u+1\right)\left(u-1\right)}du}

\text{Take the constant out}: $\int a \cdot f(x) d x=a \cdot \int f(x) d x$$=2 \cdot \int \dfrac{1}{u(u+1)(u-1)} d u$

=2\cdot \int \dfrac{1}{u\left(u+1\right)\left(u-1\right)}du

\text { Take the partial fraction of } \dfrac{1}{u(u+1)(u-1)}: \quad-\dfrac{1}{u}+\dfrac{1}{2(u+1)}+\dfrac{1}{2(u-1)}

=2\cdot \int \:-\dfrac{1}{u}+\dfrac{1}{2\left(u+1\right)}+\dfrac{1}{2\left(u-1\right)}du

\text { Apply the Sum Rule: } \int f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x

=2\left(-\int \dfrac{1}{u}du+\int \dfrac{1}{2\left(u+1\right)}du+\int \dfrac{1}{2\left(u-1\right)}du\right)

\int \dfrac{1}{u} d u=\ln |u|

\int \dfrac{1}{2(u+1)} d u=\dfrac{1}{2} \ln |u+1|

\int \dfrac{1}{2(u-1)} d u=\dfrac{1}{2} \ln |u-1|

\sf{=2\left(-\ln \left|u\right|+\dfrac{1}{2}\ln \left|u+1\right|+\dfrac{1}{2}\ln \left|u-1\right|\right)}

________________________--__________

\bigstar\:\:\bf{2\left(-\ln \left|u\right|+\dfrac{1}{2}\ln \left|u+1\right|+\dfrac{1}{2}\ln \left|u-1\right|\right=-2\ln \left|u\right|+\ln \left|u+1\right|+\ln \left|u-1\right|)}

\sf{=-\dfrac{1}{2}\ln \left|u+1\right|+\dfrac{1}{2}\ln \left|u-1\right|-2\ln \left|u\right|+\ln \left|u+1\right|+\ln \left|u-1\right|}

________________________--__________

\text { Substitute back } u=x-2

=-\dfrac{1}{2}\ln \left|x-2+1\right|+\dfrac{1}{2}\ln \left|x-2-1\right|-2\ln \left|x-2\right|+\ln \left|x-2+1\right|+\ln \left|x-2-1\right|

=\dfrac{1}{2}\ln \left|x-1\right|+\dfrac{3}{2}\ln \left|x-3\right|-2\ln \left|x-2\right|

________________________--__________

\mathrm{Add\:a\:constant\:to\:the\:solution}

\sf{=\dfrac{1}{2}\ln \left|x-1\right|+\dfrac{3}{2}\ln \left|x-3\right|-2\ln \left|x-2\right|+C}

Why ?

\sf{if} \:\:\dfrac{d F(x)}{d x}=f(x) \text { then } \int f(x) d x=F(x)+C}

________________________--__________

Similar questions