Math, asked by tawkirahmedrupom, 18 hours ago

integrate |x - 1| dx from -2 to 6

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\red{\rm :\longmapsto\:\displaystyle\int_{-2}^6\tt  |x - 1| \: dx}

can be rewritten as

\rm \:  =  \:  \: \displaystyle\int_{-2}^1\tt  |x - 1| \: dx \:  +  \: \displaystyle\int_{1}^6\tt  |x - 1| \: dx

We know,

By definition of Modulus function

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x, \:  \: if \:  \: x \:  <  \: 0} \\ &\sf{ \:  \:  \: x, \:  \: if \:  \: x \:  >  \: 0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x - 1|  = \begin{cases} &\sf{ - (x - 1), \:  \: if \:  \: x \:  <  \: 1} \\ &\sf{ \:  \:  \: x - 1, \:  \: if \:  \: x \:  >  \: 1} \end{cases}\end{gathered}\end{gathered}

that is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x - 1|  = \begin{cases} &\sf{  \:  \:  \: 1 - x, \:  \: if \:  \: x \:  <  \: 1} \\ &\sf{ \:  \:  \: x - 1, \:  \: if \:  \: x \:  >  \: 1} \end{cases}\end{gathered}\end{gathered}

So, using this, the above integral can be rewritten as

\rm \:  =  \:  \: \displaystyle\int_{-2}^1\tt  (1 - x) \: dx \:  +  \: \displaystyle\int_{1}^6\tt  (x - 1) \: dx

We know,

\boxed{ \rm{ \displaystyle\int\tt  {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1} + c}}

So, using this identity, we get

\rm \:  =  \:  \: \bigg(x - \dfrac{ {x}^{2} }{2} \bigg)_{-2}^1 + \bigg(\dfrac{ {x}^{2} }{2}  - x\bigg)_{1}^6

\rm \:  =  \:  \: \bigg(1 - \dfrac{1}{2}  \bigg) - \bigg( - 2 - 2\bigg) +\bigg(18 - 6  \bigg) -  \bigg( \dfrac{1}{2}  - 1 \bigg)

\rm \:  =  \:  \: \dfrac{1}{2}  + 4 + 12 + \dfrac{1}{2}

\rm \:  =  \:  \: 17

Hence,

\red{\rm :\longmapsto\:\displaystyle\int_{-2}^6\tt  |x - 1| \: dx = 17}

Additional Information :-

\boxed{ \rm{ \displaystyle\int_{a}^b\tt f(x)dx = \displaystyle\int_{a}^b\tt f(y)dy}}

\boxed{ \rm{ \displaystyle\int_{a}^b\tt f(x)dx \:  = \:  -  \:  \displaystyle\int_{b}^a\tt f(x)dx}}

\boxed{ \rm{ \displaystyle\int_{0}^a\tt f(x)dx \:  = \:  \displaystyle\int_{0}^a\tt f(a - x)dx}}

\boxed{ \rm{ \displaystyle\int_{ - a}^a\tt f(x)dx \:  =2 \:  \displaystyle\int_{0}^a\tt f(x)dx, \: if \: f( - x) = f(x)}}

\boxed{ \rm{ \displaystyle\int_{ - a}^a\tt f(x)dx \:  0, \: if \: f( - x) =  - f(x)}}

\boxed{ \rm{ \displaystyle\int_{0}^{2a}\tt f(x)dx \:  =2 \:  \displaystyle\int_{0}^a\tt f(x)dx, \: if \: f(2a - x) = f(x)}}

\boxed{ \rm{ \displaystyle\int_{0}^{2a}\tt f(x)dx \:   = 0, \:  \: if \: f(2a - x) =  - f(x)}}

Similar questions