Math, asked by look4shobana, 5 months ago

integrate x+1 /root of 8+x-x² with respect to x​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \frac{x + 1}{ \sqrt{8 + x -  {x}^{2} } } dx \\

let \:  \: 8 + x -  {x}^{2}  =  {t}^{2}  \\  \implies (- 2x + 1)dx = 2tdt

 =  -   \frac{1}{2} \int \frac{ - 2x - 2}{ \sqrt{8 + x -  {x}^{2} } } dx \\

 = -   \frac{1}{2}  \int \frac{ (- 2x + 1) - 3}{ \sqrt{8 + x -  {x}^{2} } } dx \\

 =  -  \frac{1}{2}  \int \frac{( - 2x + 1)dx}{ \sqrt{8 + x -  {x}^{2} } }  +  \frac{3}{2}  \int \frac{dx}{ \sqrt{8 + x -  {x}^{2} } }  \\

 =   - \frac{1}{2}  \int \frac{2tdt}{t}  +  \frac{3}{2}  \int \frac{dx}{ \sqrt{8 - ( {x}^{2} - x +  \frac{1}{4}  -  \frac{1}{4} )} }  \\

 =  -  \int \: dt +  \frac{3}{2}  \int \frac{dx}{  \sqrt{8 +  \frac{1}{4} - (x -  \frac{1}{2} )^{2} } }  \\

 =  - t +  \frac{3}{2}  \int\frac{dx}{ \sqrt{ \frac{33}{4} - (x -  \frac{1}{2})^{2}   } }  \\

 =  -  \sqrt{8  + x -  {x}^{2} }  +  \frac{3}{2}  \int \frac{dx}{ \sqrt{ {( \frac{ \sqrt{33} }{2}) }^{2}  - (x -   \frac{1}{2})^{2}   } }  \\

  =  -  \sqrt{8 + x -  {x}^{2} }  +  \frac{3}{2} . \frac{2}{ \sqrt{33} }  \sin^{ - 1} ( \frac{x -  \frac{1}{2} }{ \frac{ \sqrt{33} }{2} } )  \\

 =  -  \sqrt{8 + x -  {x}^{2} }  +  \frac{3}{ \sqrt{33} }  \sin^{ - 1} ( \frac{2x - 1}{ \sqrt{33} } ) + c  \\

Similar questions