Integrate(x^2-cos x +1/x)dx
Answers
Answered by
61
GIVEN :–
A function x² - cos(x) + (1/x).
TO FIND :–
Intigration of given function.
SOLUTION :–
I = ∫ [x² - cos(x) + (1/x)]dx
• We know that –
(1) ∫(xⁿ)dx = [x^(n+1)] / (n+1)
(2) ∫cos(x)dx = sin(x)
(3) ∫(1/x) dx = log(x)
So that –
I = x³/3 - sin(x) + log(x) + c
Important formula of integration :–
(1) ∫sin(x).dx = - cos(x) + c
(2) ∫cos(x).dx = sin(x) + c
(3) ∫tan(x).dx = log|sec(x)| +c
(4) ∫cot(x).dx = log|sin(x)| + c
(5) ∫sec(x).dx = log|sec(x) + tan(x)| + c
(6) ∫cosec(x).dx = log|cosec(x) - cot(x)| + c
Answered by
4
Answer:
Explanation:
Basic formulae of integration:
Similar questions