Math, asked by somnathchavan9099, 3 months ago

integrate x^2 cos(x^3) dx​

Answers

Answered by amansharma264
10

EXPLANATION.

⇒ ∫x².cos(x³)dx.

As we know that,

By using the substitution method, we get.

⇒ x³ = t.

Differentiate w.r.t x, we get.

⇒ 3x²dx = dt.

⇒ x²dx = dt/3.

Put the value in the equation, we get.

⇒ ∫cos(t)dt/3.

⇒ 1/3∫cos(t)dt.

⇒ 1/3 sin(t) + c.

Put the value of t = x³ in the equation, we get.

⇒ 1/3 sin(x³) + c.

                                                                                                                     

MORE INFORMATION.

Standard integrals.

(1) = ∫0.dx = c.

(2) = ∫1.dx = x + c.

(3) = ∫k dx = kx + c, (k ∈ R).

(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ -1).

(5) = ∫dx/x = ㏒(x) + c.

(6) = ∫eˣdx = eˣ + c.

(7) = ∫aˣdx = aˣ/㏒(a) + c = aˣ㏒(e) + c.

Similar questions