Math, asked by arshg898, 7 months ago

integrate:x/√2x^2+3

Answers

Answered by anindyaadhikari13
2

Question:-

  • Integrate.

Solution:-

 \displaystyle \int \sf \small \frac{x}{ \sqrt{2 {x}^{2} + 3 } }  \: dx

Using substitution, \sf t=\sqrt{2x^{2}+3}, we get,

 \displaystyle =  \int \sf \small  \frac{1}{2} dt

Using  \displaystyle \int  \sf a \: dx = a \times x

We get,

 \sf =  \frac{1}{2}  \times  \sqrt{2 {x}^{2} + 3 }

Now, add the constant of integration,

 \sf =  \frac{1}{2}  \times  \sqrt{2 {x}^{2} + 3 } +  C, C\in R

Answer:-

  •  \sf \frac{1}{2}  \times  \sqrt{2 {x}^{2} + 3 } +  C, C\in R
Answered by nehashanbhag0729
4

Answer:

Question:-

Integrate.

Solution:-

\displaystyle \int \sf \small \frac{x}{ \sqrt{2 {x}^{2} + 3 } } \: dx∫

2x

2

+3

x

dx

Using substitution, \sf t=\sqrt{2x^{2}+3}t=

2x

2

+3

, we get,

\displaystyle = \int \sf \small \frac{1}{2} dt=∫

2

1

dt

Using \displaystyle \int \sf a \: dx = a \times x∫adx=a×x

We get,

\sf = \frac{1}{2} \times \sqrt{2 {x}^{2} + 3 }=

2

1

×

2x

2

+3

Now, add the constant of integration,

\sf = \frac{1}{2} \times \sqrt{2 {x}^{2} + 3 } + C, C\in R=

2

1

×

2x

2

+3

+C,C∈R

Answer:-

\sf \frac{1}{2} \times \sqrt{2 {x}^{2} + 3 } + C, C\in R

2

1

×

2x

2

+3

+C,C∈R

hoe the answer helps u

Similar questions