integrate:x/√2x^2+3
Answers
Answered by
2
Question:-
- Integrate.
Solution:-
Using substitution, , we get,
Using
We get,
Now, add the constant of integration,
Answer:-
Answered by
4
Answer:
Question:-
Integrate.
Solution:-
\displaystyle \int \sf \small \frac{x}{ \sqrt{2 {x}^{2} + 3 } } \: dx∫
2x
2
+3
x
dx
Using substitution, \sf t=\sqrt{2x^{2}+3}t=
2x
2
+3
, we get,
\displaystyle = \int \sf \small \frac{1}{2} dt=∫
2
1
dt
Using \displaystyle \int \sf a \: dx = a \times x∫adx=a×x
We get,
\sf = \frac{1}{2} \times \sqrt{2 {x}^{2} + 3 }=
2
1
×
2x
2
+3
Now, add the constant of integration,
\sf = \frac{1}{2} \times \sqrt{2 {x}^{2} + 3 } + C, C\in R=
2
1
×
2x
2
+3
+C,C∈R
Answer:-
\sf \frac{1}{2} \times \sqrt{2 {x}^{2} + 3 } + C, C\in R
2
1
×
2x
2
+3
+C,C∈R
hoe the answer helps u
Similar questions