Math, asked by hihey36051, 1 month ago

Integrate
x^3+1/(sqrt(x^2+x))​

Attachments:

Answers

Answered by IIBandookbaazII
1

$3: 333$</p><p>$x$</p><p>Q How do i integrat...</p><p>$\square$ \squareं quora.com</p><p>Evaluate</p><p>$I=\int \frac{x-1}{(x+1) \sqrt{x^{3}+x^{2}+x}} d x$</p><p>Rationalisation is the convenient way to start with</p><p></p><p>$\Rightarrow I=\int \frac{(x-1)(x+1)}{(x+1)^{2} \sqrt{x^{3}+x^{2}+x}} d x$</p><p>$\Rightarrow I=\int \frac{x^{2}-1}{\left(x^{2}+1+2 x\right) \sqrt{x^{3}+x^{2}+x}} d x$</p><p>$\Rightarrow I=\int \frac{\left(1-\frac{1}{2}\right)}{\left(x+\frac{1}{x}+2\right) \sqrt{x+1+\frac{1}{x}} d x} d x$</p><p>Thetititit</p><p>$\left(x+1+\frac{1}{x}\right)=t$</p><p>$\Rightarrow\left(1-\frac{1}{x^{2}}\right) d x=d t$</p><p>$\Rightarrow I=\int \frac{1}{(t+1) \sqrt{t}} d t$</p><p>$\Rightarrow I=\int \frac{1+t-t}{(t+1) \sqrt{t}} d t$</p><p>$\Rightarrow I=\int \frac{1+t}{(t+1) \sqrt{t}} d t-\int \frac{t}{(t+1) \sqrt{t}} d t$</p><p>$\Rightarrow I=\int \frac{1}{\sqrt{t}} d t-\int \frac{\sqrt{t}}{t+1} d t$</p><p>$\Rightarrow I=2 \sqrt{t}-\underbrace{\int \frac{\sqrt{t}}{t+1} d t}_{I_{1}}$</p><p>Let's look at $I_{1}$ $I_{1}=\int \frac{\sqrt{t}}{t+1} d t$</p><p>Substitute: $\sqrt{t}=u$ $\Rightarrow \frac{1}{2 \sqrt{t}}^{t=d u}$</p><p>$\Rightarrow d t=2 \sqrt{\text { ftan }}$</p><p>$\Rightarrow d t=2 u d u$</p><p>$\Rightarrow I_{1}=2 \int \frac{u^{2}}{u^{2}+1} d u$</p><p>$\Rightarrow I_{1}=2 \int \frac{u^{2}+1-1}{u^{2}+1} d u$

Similar questions