Math, asked by noorjehansanowar, 21 days ago

Integrate x^3 - 4x^2 - x dx / x^2 -2x +5​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \displaystyle \int \dfrac{ {x}^{3} - 4 {x}^{2}  - x }{ {x}^{2}  - 2x + 5}  \: dx

 \displaystyle  = \int \dfrac{x \left( {x}^{2} - 4 x  - 1  \right)}{ {x}^{2}  - 2x + 5}  \: dx

 \displaystyle  = \int \dfrac{x \left( {x}^{2} - 2x   + 5 - 2x - 6  \right)}{ {x}^{2}  - 2x + 5}  \: dx \\

 \displaystyle  = \int \dfrac{x \left( {x}^{2} - 2x   + 5  \right)- 2x ^{2}  - 6x  }{ {x}^{2}  - 2x + 5}  \: dx \\

 \displaystyle  = \int \dfrac{x \left( {x}^{2} - 2x   + 5  \right) }{ {x}^{2}  - 2x + 5}  \: dx  - \int \dfrac{2{x}^{2}   + 6  }{ {x}^{2}  - 2x + 5}  \: dx \\

 \displaystyle  = \int x \: dx  - \int \dfrac{2{x}^{2}   - 4x + 10  + 4x- 4 }{ {x}^{2}  - 2x + 5}  \: dx \\

 \displaystyle  = \int x \: dx  - \int \dfrac{2{x}^{2}   - 4x + 10  }{ {x}^{2}  - 2x + 5}  \: dx +  \int \dfrac{4x - 4}{{x}^{2} - 2x + 5 } \: dx  \\

 \displaystyle  = \int x \: dx  - 2\int \dfrac{{x}^{2}   - 2x + 5  }{ {x}^{2}  - 2x + 5}  \: dx + 2 \int \dfrac{2x - 2}{{x}^{2} - 2x + 5 } \: dx  \\

 \displaystyle  = \int x \: dx  - 2\int \: dx + 2 \int \dfrac{d \left( {x}^{2}  - 2 x + 5\right)}{{x}^{2} - 2x + 5 }   \\

 \displaystyle  = \dfrac{ {x}^{2} }{2}  - 2x + 2  \ln | {x}^{2} - 2x + 5 |  + c    \\

Similar questions