Math, asked by asmithabalabhadruni, 5 months ago

integrate (x ^ 3 * cos x/2 + 1/2) * sqrt(4 - x ^ 2) dx from - 2 to 2​

Answers

Answered by MaheswariS
62

\textbf{Given:}

\mathsf{\displaystyle\int\limits^2_{-2}\;\left(x^3\;cos\left(\dfrac{x}{2}\right)\,\dfrac{1}{2}\right)\;\sqrt{4-x^2}\;dx}

\textbf{To evaluate:}

\mathsf{\displaystyle\int\limits^2_{-2}\;\left(x^3\;cos\left(\dfrac{x}{2}\right)\,\dfrac{1}{2}\right)\;\sqrt{4-x^2}\;dx}

\textbf{Solution:}

\underline{\textsf{Concept used:}}

\mathsf{\displaystyle\int\limits^a_{-a}\,f(x)\;dx=\2\displaystyle\int\limits^a_{0}\,f(x)\;dx\;if\;f(x)\;is\;even}

\mathsf{\displaystyle\int\limits^a_{-a}\,f(x)\;dx=0\;if\;f(x)\;is\;odd}

\mathsf{Let\;f(x)=\left(x^3\;cos\left(\dfrac{x}{2}\right)\,\dfrac{1}{2}\right)\;\sqrt{4-x^2}}

\mathsf{f(-x)=\left((-x)^3\;cos\left(\dfrac{-x}{2}\right)\,\dfrac{1}{2}\right)\;\sqrt{4-(-x)^2}}

\mathsf{f(-x)=\left(-x^3\;cos\left(\dfrac{x}{2}\right)\,\dfrac{1}{2}\right)\;\sqrt{4-x^2}}

\mathsf{f(-x)=-\left(x^3\;cos\left(\dfrac{x}{2}\right)\,\dfrac{1}{2}\right)\;\sqrt{4-x^2}}

\implies\mathsf{f(-x)=-f(x)}

\therefore\mathsf{f(x)\;is\;an\;odd\;function}

By properties of definite integrals,

\mathsf{\displaystyle\int\limits^2_{-2}\;\left(x^3\;cos\left(\dfrac{x}{2}\right)\,\dfrac{1}{2}\right)\;\sqrt{4-x^2}\;dx=0}

\textbf{Find more:}

Answered by debjitroy30
18

Answer:

π

Step-by-step explanation:

check the pic above for solution

Attachments:
Similar questions