Math, asked by FsToxic02, 1 month ago


Integrate |x^3 - x | with respect to x,from limits -1 to 2.

❌Nᴏ Sᴘᴀᴍ Aɴsᴡᴇʀs❌​

Answers

Answered by amansharma264
37

EXPLANATION.

\sf \implies \displaystyle \int_{-1}^{2} |x^{3} - x|dx

As we know that,

We can write equation as,

⇒ f(x) = (x³ - x).

⇒ f(x) = x(x² - 1).

As we know that,

Formula of :

⇒ (x² - y²) = (x + y)(x - y).

⇒ f(x) = x(x + 1)(x - 1).

Put this point on wavy curve method, we get.

\sf \implies \displaystyle \int_{-1}^{0} (x^{3}  - x)dx + \int_{0}^{1} -(x^{3} - x)dx + \int_{1}^{2} (x^{3} - x)dx

As we know that,

Formula of :

⇒ ∫xⁿdx = xⁿ⁺¹/n + 1 + c.

Using this formula in the equation, we get.

\sf \implies \displaystyle \bigg[ \dfrac{x^{4} }{4} - \dfrac{x^{2} }{2} \bigg]_{-1}^{0} + \bigg[ \dfrac{-x^{4} }{4} + \dfrac{x^{2} }{2} \bigg]_{0}^{1} + \bigg[ \dfrac{x^{4} }{4} - \dfrac{x^{2} }{2} \bigg]_{1}^{2}

As we know that,

In definite integration firstly we put the upper limit then we put the lower limit in the equation, we get.

\sf \implies \displaystyle \bigg[ \dfrac{x^{4} }{4} - \dfrac{x^{2} }{2} \bigg]_{-1}^{0}

\sf \implies \displaystyle \bigg[ \dfrac{(0)^{4} }{4} - \dfrac{(0)^{2} }{2} \bigg] - \bigg[ \dfrac{(-1)^{4} }{4} - \dfrac{(-1)^{2} }{2} \bigg]

\sf \implies \displaystyle - \bigg[ \dfrac{1}{4} - \dfrac{1}{2} \bigg]

\sf \implies \displaystyle - \bigg[ \dfrac{1 - 2}{4} \bigg]

\sf \implies \displaystyle - \bigg[ \dfrac{-1}{4} \bigg] = \dfrac{1}{4}

\sf \implies \displaystyle \bigg[ \dfrac{-x^{4} }{4} + \dfrac{x^{2} }{2} \bigg]_{0}^{1} = \bigg[ \dfrac{x^{2} }{2} - \dfrac{x^{4} }{4} \bigg]_{0}^{1}

\sf \implies \displaystyle \bigg[ \dfrac{(1)^{2} }{2} - \dfrac{(1)^{4} }{4} \bigg] - \bigg[ \dfrac{(0)^{2} }{2} - \dfrac{(0)^{4} }{4} \bigg]

\sf \implies \displaystyle \bigg[ \dfrac{1}{2} - \dfrac{1}{4} \bigg]

\sf \implies \displaystyle \bigg[ \dfrac{2 - 1}{4} \bigg] = \dfrac{1}{4}

\sf \implies \displaystyle \bigg[ \dfrac{x^{4} }{4} - \dfrac{x^{2} }{2} \bigg]_{1}^{2}

\sf \implies \displaystyle \bigg[ \dfrac{(2)^{4} }{4} - \dfrac{(2)^{2} }{2} \bigg] - \bigg[ \dfrac{(1)^{4} }{4} - \dfrac{(1)^{2} }{2} \bigg]

\sf \implies \displaystyle \bigg[ \dfrac{16}{4} - \dfrac{4}{2} \bigg] - \bigg[ \dfrac{1}4} - \dfrac{1}{2} \bigg]

\sf \implies \displaystyle \bigg[ 4 - 2 \bigg] - \bigg[ \dfrac{1 - 2}{4} \bigg]

\sf \implies \displaystyle \bigg[ 2 \bigg] - \bigg[ \dfrac{-1}{4} \bigg]

\sf \implies \displaystyle 2 + \dfrac{1}{4}

\sf \implies \displaystyle \dfrac{8 + 1}{4} = \dfrac{9}{4}

Adding all the values in the equation, we get.

\sf \implies \displaystyle \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{9}{4} = \dfrac{11}{4}

\sf \implies \displaystyle \int_{-1}^{2} |x^{3} - x|dx = \dfrac{11}{4}

Answered by TrustedAnswerer19
36

   \pink{ \boxed{\boxed{\begin{array}{cc} \maltese  \bf \: \: given \\  \\   \displaystyle \int_{ - 1}^2 \bf \:  | {x}^{3} - 4x |  \: dx \\  \\ =     \displaystyle \int_{ - 1}^2\bf \:  |x( {x}^{2} - 1)| \: dx \\  \\  =    \displaystyle \int_{ - 1}^2\bf \:  |x(x - 1)(x + 1)| \: dx  \\  \\  \bf \: here \:  {x}^{3}   - x = 0 \\  \bf \: when \:  \:  \: x =0 \: , \: 1   \: \: and \:  \:  - 1 \\  \\    \orange{ {\boxed{\begin{array}{c   | c}  \underline{ \bf \: value \: of \: x }&  \underline{\bf \: value \: of \: ( {x}^{3}   - x)}  \\  \\ \bf  - 1 < x < 0& \bf + ve  \\  \\ \bf 0 < x < 1& \bf \:  - ve \\  \\  \bf \: 1 < x < 2& \bf + ve\end{array}}}}\end{array}}}}

   \pink{ \boxed{\boxed{\begin{array}{cc} \maltese  \bf \:  \: again \:  \\  \\  \bf | {x}^{3}  - x|  =  {x}^{3} - x \:  \:  \\  \bf when \:  - 1 < x < 0 \:  \: and  \: 1 < x < 2 \\  \\  \sf \: and \:  \\  \\  \bf \:  | {x}^{3}  - x|  =  -  {x}^{3}  + x \:  \:  \\  \bf \: when \:  \: 0 < x < 1\end{array}}}}

Now,

\displaystyle \int_{ - 1}^2 \bf \:   | {x}^{3}  - x|  \: dx \\  \\   =  \small{ \displaystyle \int_{ - 1}^0 \bf \:  ( {x}^{3}  - x) \: dx + \displaystyle \int_{0}^1 \bf \:  ( -  {x}^{3}  + x) \: dx + \displaystyle \int_{ 1}^2 \bf \:  ( {x}^{3}  - x) \: dx} \\  \\  =  \bf \: [ \frac{ {x}^{4} }{4}  -  \frac{ {x}^{2} }{2}   ]_ { - 1}^0 \:  + [  \frac{ -  {x}^{4} }{4}   +  \frac{ {x}^{2} }{2}  ]_{0}^1 \:  + [ \frac{ {x}^{4} }{4}   -  \frac{ {x}^{2} }{2}  ]_1^2 \\  \\  =  - ( \frac{1}{4}  -  \frac{1}{2} )\:+\:( \frac{ - 1}{4}  +  \frac{1}{2} ) + ( \frac{16}{4}  -  \frac{4}{2} ) - ( \frac{1}{4}  -  \frac{1}{2} ) \\  \\  =  \frac{1}{4}  +  \frac{1}{4}  + 2 +  \frac{1}{4}  \\  \\  = 2 +  \frac{3}{4}  \\  \\  =  \frac{11}{4}

Similar questions