Math, asked by sukrittaya745, 1 year ago

Integrate x^9/(4x^2+1)^6

Answers

Answered by divyanshu8473
2

Answer:

I=∫x9(x2+4)6dx

Let x=2tant ; dx=2sec2tdt

I=∫210tan9tsec2tdt(4sec2t)6

=∫sin9tcostdt4

=sin10t40+C

But sint=xx2+4−−−−−√

I=x1040(x2+4)5+C

Step-by-step explanation:

Answered by mad210218
5

Given:

Function f

 \bf \:  \frac{ {x}^{9} }{(4 {x}^{2}  + 1) ^{6} }

To find :

Integration of above function f.

Solution:

The given function is :

 \bf \frac{ {x}^{9} }{(4 {x}^{2}  + 1) ^{6} }

Integrating this function :

 \bf \int \frac{ {x}^{9} }{(4 {x}^{2}  + 1) ^{6} }

Taking x out of the denominator

 \bf  \int \frac{ {x}^{9} }{ {x}^{12} (4   +  \frac{1}{ ({x}^{2}) }) ^{6} }

cancelling power of x with numerator :

 \bf  \int \frac{ 1 }{ {x}^{3} (4   +  \frac{1}{ ({x}^{2}) }) ^{6} }

Put

(4   +  \frac{1}{ {x}^{2} })   = t \\  \\ so \\   \frac{ - 2}{ ({x}^{3}) } = dt

Then integration becomes :

 \bf \int \:  \frac{dt}{2 {t}^{6} }

Now integrating above equation, we get

 \bf  \frac{1}{10 \times  {t}^{5} }  + c

Putting the value of t from above

The integration of function f =

  \bf \: \frac{1}{10} (4 +  \frac{1}{ {x}^{2} } ) ^{ - 5}  + c

Similar questions