Math, asked by sruthivasan02, 11 months ago

integrate x power 15 by 1 + x power 32​

Answers

Answered by dikshaverma4you
4

Integration

\int\ \frac{x^{15} }{1+x^{32} }.dx

\int\ \frac{x^{15} }{1+(x^{16} )^{2}} . dx  .......................... Eq.(1)

Let,

u = x^{16} \\\\\frac{du}{dx} = 16x^{15\\} \\

\boxed{ \frac{du}{16} = x^{15}.dx }}

Eq.(1) becomes :-

\int\ \frac{1}{1+u^{2} } .\frac{du}{16} = \frac{1}{16}  \int\ \frac{1}{1+u^{2} } .du

= \frac{1}{16}tan^{-1} (u) + C

\boxed{ = \frac{1}{16}tan^{-1}  (x^{16} ) + C}}

Answered by Swarup1998
1

\mathrm{\int \dfrac{x^{15}}{1+x^{32}}\:dx=\dfrac{1}{16}\:tan^{-1}(x^{16})+c}

where \mathrm{c} is constant of integration.

Step-by-step explanation:

We have to find

\mathrm{\quad\quad\quad\quad \int \dfrac{x^{15}}{1+x^{32}}\:dx=\:?}

Let \mathrm{x^{16}=t} such that

\mathrm{\quad\quad\quad 16\:x^{15}\:dx=dt}

\implies \mathrm{x^{15}\:dx=\dfrac{1}{16}\:dt}

\therefore \mathrm{\int \dfrac{x^{15}}{1+x^{32}}\:dx}

\mathrm{\quad =\int \dfrac{x^{15}\:dx}{1+(x^{16})^{2}}}

\mathrm{\quad =\int \dfrac{\dfrac{dt}{16}}{1+t^{2}}}

\mathrm{\quad =\dfrac{1}{16} \int \dfrac{dt}{1+t^{2}}}

\mathrm{\quad =\dfrac{1}{16}\: tan^{-1}(t)+c}

where \mathrm{c} is constant of integration.

\mathrm{\quad =\dfrac{1}{16}\:tan^{-1}(x^{16})+c}

This is the required integral.

Integration formula:

\mathrm{\quad\quad\quad \int \dfrac{dx}{1+x^{2}}=tan^{-1}(x)+c}

where \mathrm{c} is constant of integration.

More integration problems:

• e^sinx sin2xdx integral - https://brainly.in/question/1675285

• solve this question. ( triple integrals) - https://brainly.in/question/12708686

Similar questions