Math, asked by kittukhushi123, 1 month ago

integrate x sin x^2 dx limits 0 to root pi​

Answers

Answered by mathdude500
19

Given Question :-

Evaluate:-

\sf \ \displaystyle\int^{ \sqrt{\pi} } _{0}  \tt \: x \: sin(x^{2})dx

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

Formula used :-

\boxed{\bf\: \int \: sinx \: dx =  -  \: cosx}

 \boxed{\bf \: cos\pi =  - 1}

 \boxed{\bf \: cos0=   1}

Let's solve the problem now!!

Given that

\sf \ \displaystyle\int^{ \sqrt{\pi} } _{0}  \tt \: x \: sin(x^{2})dx

\rm \: Let \:I \:  =  \: \sf \ \displaystyle\int^{ \sqrt{\pi} } _{0}  \tt \: x \: sin(x^{2})dx

As we know that,

By using substitution method, we get.

  • ⇒ Put x² = y.

Differentiate w.r.t x, we get.

  • ⇒ 2x dx = dy.

  • ⇒ (x)dx = dy/2.

As we know that,

  • In definite integration, if we apply substitution method, then limit will also change, so, we get,

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y =  {x}^{2}  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf  \sqrt{\pi}  & \sf \pi \end{array}} \\ \end{gathered}

Hence,

Given integral can be rewritten as

\rm :\longmapsto\: I \:  =  \: \displaystyle\int^{\pi} _{0}  \tt \: \: siny \: \dfrac{dy}{2}

\rm :\longmapsto\: I \:  =  \dfrac{1}{2} \: \displaystyle\int^{\pi} _{0}  \tt \: \: siny \: dy

\rm :\longmapsto\: I \:  =  -  \dfrac{1}{2} \:  \bigg(cosy\bigg)^{\pi} _{0}  \tt \:

\rm :\longmapsto\: I \:  =  -  \dfrac{1}{2} \:  \bigg(cos\pi \:  -  \: cos0\bigg)

\rm :\longmapsto\: I \:  =  -  \dfrac{1}{2} \:  \bigg( - 1\:  -  \: 1\bigg)

\rm :\longmapsto\: I \:  =  -  \dfrac{1}{2} \:  \bigg(  -  \: 2\bigg)

\rm :\longmapsto\: I \:  =  1

Hence,

\pink{\underbrace{ \purple{\boxed{\bf \:\sf \ \displaystyle\int^{ \sqrt{\pi} } _{0}  \tt \: x \: sin(x^{2})dx \:  =  \: 1}}}}

Additional Information :-

Properties of definite integration :-

\sf (1). \:  \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(t)}

\sf (2). \:  \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)}

\sf (3). \:  \int\limits^b_a {f(x)} \, dx = \int\limits^c_a {f(x)} \, dx + \int\limits^b_c {f(x)} \, dx \ where\ \ a < c < b

\sf (4). \:  \int\limits^a_0 {f(x)} \, dx =\int\limits^a_0 {f(a - x)}

\sf (5). \:  \int\limits^b_a {f(x)} \, dx = \int\limits^b_a{f(a + b - x)}

Similar questions