integrate (x.sinx) / ( (cos x) cube)
Answers
Answer:
(x/2) Sec²x - (1/2) tanx + c
Step-by-step explanation:
Let
I = ∫ x Sinx / Cos³x dx
= ∫ x (Sinx / Cosx) (1/ Cos²x) dx
= ∫ x tan x sec² x dx
Let tan x = t => x = tan⁻¹ t
differentiating both sides
sec² x dx = dt
I = ∫ tan⁻¹ t t dt
Now applying intregation by parts
= tan⁻¹ t (t²/ 2) - ∫ (1 / 1+t²) (t² / 2) dt
= (t² tan⁻¹t )/ 2 -1/2 ∫ (t² /1+t² ) dt
( 1+t² )- 1
=(t² tan⁻¹t)/2 -1/2 ∫ ----------------- dt
( 1+t²)
t² tan⁻¹ t 1+t² 1
= -------------- -1/2 ∫ (---------- - ---------) dt
2 1+t² 1+t²
t² tan⁻¹ t 1
= --------------- - 1/2 ∫ ( 1 - ------------) dt
2 1+ t²
t² tan⁻¹ t
= ---------------- - 1/2 ( t - tan⁻¹ t ) + c
2
t² tan⁻¹t t tan⁻¹t
= -------------- - ------- + ------------- + c
2 2 2
= 1/2 (t² + 1) tan⁻¹t - 1/2 t + c
= 1/2 ( tan²x + 1) x - 1/2 tanx + c
= (x/2 ) Sec²x -( 1/2 ) tanx + c