Math, asked by priyanshijain69, 1 month ago

integrate x/(x+1)² dx​

Attachments:

Answers

Answered by ridhya77677
3

the solution is in attachment.

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{x}{ {(x + 1)}^{2} }dx

☆ On adding and Subtracting 1 in numerator, we get

\rm  =  \:  \: \:\displaystyle\int\tt \dfrac{x + 1 - 1}{ {(x + 1)}^{2} }dx

\rm  =  \:  \: \:\displaystyle\int\tt \dfrac{x + 1}{ {(x + 1)}^{2} }dx  + \displaystyle\int\tt \dfrac{1}{ {(x + 1)}^{2} }dx

\rm  =  \:  \: \:\displaystyle\int\tt \dfrac{1}{ {(x + 1)}}dx  + \displaystyle\int\tt  {(x + 1)}^{ - 2} dx

 \: \rm=  \:  \:  \:  log(x + 1) + \dfrac{ {(x + 1)}^{ - 2 + 1} }{ - 2 + 1} + c

\boxed{ \sf \:\because \: \displaystyle\int\tt \dfrac{1}{x}dx =  log(x) +c \: \:\: and \: \displaystyle\int\tt  {x}^{n}dx = \dfrac{ {x}^{n + 1}}{n + 1}+c}

 \: \rm=  \:  \:  \:  log(x + 1) + \dfrac{ {(x + 1)}^{ -1} }{ -1} + c

 \: \rm=  \:  \:  \:  log(x + 1)  -  \dfrac{1}{x + 1}  + c

Additional Information :-

\green{\boxed{ \bf \:\int {x}^{n} \: dx = \dfrac{ {x}^{n + 1} }{n + 1} + c}}

\green{\boxed{ \bf \:\int \: kdx =kx + c}}

\green{\boxed{ \bf \:\int \: cosx \: dx =sinx + c}}

\green{\boxed{ \bf \:\int \: sinx \: dx = - \: cosx + c}}

\green{\boxed{ \bf \: \int \: \dfrac{1}{x} dx = log(x) + c}}

\green{\boxed{ \bf \: \int \: secx \: tanx \: dx =secx + c}}

\green{\boxed{ \bf \: \int \: cosecx \: cotx \: dx = - \: cosecx + c}}

\green{\boxed{ \bf \: \int \: {sec}^{2}x \: dx = tanx+ c}}

\green{\boxed{ \bf \: \int \: {cosec}^{2}x \: dx = - \: cotx+ c}}

\green{\boxed{ \bf \: \int \: cotx \: dx = log(sinx) + c}}

\green{\boxed{ \bf \: \int \: tanx \: dx = log(secx) + c}}

Similar questions