Math, asked by krishnadhunde00738, 2 months ago

integrate x/(x-1)^2(x+2) dx​

Answers

Answered by mathdude500
8

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

1. \:  \boxed{ \blue {\rm \:  \int \: \dfrac{1}{x} dx \:  = log \: x  \: +  \: c}}

2. \:  \boxed{ \blue {\rm \:  \int \:  {x}^{n} dx \:  = \dfrac{ {x}^{n  \: + \:  1} }{n + 1}  + c}}

3. \:  \boxed{ \blue {\rm \:  \int \:  {x}^{ - 2} dx \:  =  - \dfrac{ 1}{x}  + c}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{ Question   }}

:\implies \tt \:   \int \: \dfrac{x}{ {(x  -  1)}^{2} (x + 2)}

─━─━─━─━─━─━─━─━─━─━─━─━─8

\large\underline\purple{\bold{Solution :-  }}

Using Partial Fraction, we get

 \tt \: Let \: \dfrac{x}{ {(x - 1)}^{2} (x + 2)}  = \dfrac{a}{x - 1}  + \dfrac{b}{ {(x - 1)}^{2} }  + \dfrac{c}{x + 2}

On taking LCM, we get

\tt \:  x = a(x - 1)(x + 2) + b(x + 2) + c(x - 1)^{2}

On substituting x = 1, we get

:\implies \tt \:  1 = b(1 + 2)

:\implies \tt  \boxed{ \pink{\:  b = \dfrac{1}{3} }}

On substituting x = - 2, we get

:\implies \tt \:   -  \: 2 \:  = c {( - 2 - 1)}^{2}

:\implies \tt \:   - 2 = 9c

:\implies \tt \boxed{ \pink{ \:  c \:  =  -  \: \dfrac{2}{9} }}

On substituting x = 0, we get

:\implies \tt \:  0 = a( - 1)(2) + b(2) + c {( - 1)}^{2}

:\implies \tt \:  2a = \dfrac{2}{3}   - \dfrac{2}{9}

:\implies \tt \:  2a \:  =  \: \dfrac{6 - 2}{9}

:\implies \tt \:  2a \:  =  \: \dfrac{4}{9}

:\implies  \boxed{ \pink{\tt \:  a \:  =  \: \dfrac{2}{9} }}

So, given rational function can be rewritten as

 \sf \: \dfrac{x}{ {(x - 1)}^{2} (x + 2)}  = \dfrac{2}{\dfrac{9}{(x - 1) } } +  \dfrac{1}{\dfrac{3}{ {(x - 1)}^{2} } }  - \dfrac{2}{\dfrac{9}{x  + 2} }

On integrating both sides w. r. t. x, we get

:\implies \tt \:   \int \: \dfrac{x}{ {(x  -  1)}^{2} (x + 2)}

\tt \:   = \dfrac{2}{9}  \int \: \dfrac{dx}{x - 1}  + \dfrac{1}{3}  \int \: \dfrac{dx}{ {(x - 1)}^{2} } - \dfrac{2}{9}  \int \: \dfrac{dx}{x + 2}

\tt \:  = \dfrac{2}{9}  log(x - 1)  -   \dfrac{1}{3(x - 1)}   -  \dfrac{2}{9}  log(x + 2)  + c

\tt \:  = \dfrac{2}{9} ( log(x - 1)  -  log(x + 2)  - \dfrac{1}{3(x - 1)}  + c

\bf \:   = \dfrac{2}{9}  log  \bigg|\dfrac{x - 1}{x + 2} \bigg |  - \dfrac{1}{3(x - 1)}  + c

Similar questions