Math, asked by nishuwu06, 3 months ago

integrate. :- x/(x²+x-6)​

Answers

Answered by sam322679
1

Answer:

Step-by-step explanation:

First, we have

 \[ \frac{x^2}{x^2 + x - 6} = 1 - \frac{x-6}{x^2 + x - 6} = 1 - \frac{x-6}{(x+3)(x-2)}. \]

Therefore,

 \begin{align*}  \int \frac{x^2}{x^2 + x - 6} &= \int \left( 1 - \frac{x-6}{(x+3)(x-2)} \right) \, dx \\  &= x - \int \frac{x-6}{(x+3)(x-2)} \, dx.  \end{align*}

We use partial fractions to evaluate the integral on the right. To that end, we write

 \[ \frac{x-6}{(x+3)(x-2)} = \frac{A}{x+3} + \frac{B}{x-2}. \]

This gives us the equation

 \[ A(x-2) + B(x+3) = x-6. \]

Evaluating at x = -3 and x = 2 we then have

 \begin{align*}  -5A &= -9 & \implies \qquad A &= \frac{9}{5} \\  5B &= -4 & \implies \qquad B &= -\frac{4}{5}. \end{align*}

Therefore,

 \begin{align*}  \int \frac{x^2}{x^2 + x - 6} \, dx &= x - \int \frac{x-6}{(x+3)(x-2)} \, dx \\  &= x - \frac{9}{5} \int \frac{1}{x+3} \, dx + \frac{4}{5} \int \frac{1}{x-2} \, dx \\  &= x - \frac{9}{5} \log |x+3| + \frac{4}{5} \log |x-2| + C \\  &= x + \frac{4}{5} \log |x-2| - \frac{9}{5} \log |x+3| + C. \end{align*}

Answered by llitzmisspaglill703
4

Answer:

Refer to attachment ❤✨

Attachments:
Similar questions